Citation: | LIU Qiang, LI Wen-jing, MA Chao, WEI Shu-hui, FU Tian-shu, YU Bo, LIU Chao. Design of two-dimensional low-frequency fiber Bragg grating vibration sensor[J]. Chinese Optics, 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069 |
In order to acquire and monitor the low-frequency vibration signal, a two-dimensional vibration sensor with a symmetrical circular flexure hinge is designed, which can work in the
[1] |
DU C, DUTTA S, KURUP P, et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111728. doi: 10.1016/j.sna.2019.111728
|
[2] |
AZHAR A S, KUDUS S A, JAMADIN A, et al. Recent vibration-based structural health monitoring on steel bridges: systematic literature review[J]. Ain Shams Engineering Journal, 2024, 15(3): 102501. doi: 10.1016/j.asej.2023.102501
|
[3] |
SONG G D, WANG J Y, LIU T Y, et al. Optical fiber grating strain acceleration sensors ground vibration experimental research[J]. Procedia Engineering, 2011, 26: 784-793. doi: 10.1016/j.proeng.2011.11.2238
|
[4] |
JOHNSON SINGH M, CHOUDHARY S, CHEN W B, et al. Applications of fibre Bragg grating sensors for monitoring geotechnical structures: a comprehensive review[J]. Measurement, 2023, 218: 113171. doi: 10.1016/j.measurement.2023.113171
|
[5] |
YÜKSEL K, KINET D, MOEYAERT V, et al. Railway monitoring system using optical fiber grating accelerometers[J]. Smart Materials and Structures, 2018, 27(10): 105033. doi: 10.1088/1361-665X/aadb62
|
[6] |
ZHU L Q, SUN G K, BAO W M, et al. Structural deformation monitoring of flight vehicles based on optical fiber sensing technology: a review and future perspectives[J]. Engineering, 2022, 16: 39-55. doi: 10.1016/j.eng.2021.02.022
|
[7] |
GAO ZH Y, ZHU X J, FANG Y B, et al. Active monitoring and vibration control of smart structure aircraft based on FBG sensors and PZT actuators[J]. Aerospace Science and Technology, 2017, 63: 101-109. doi: 10.1016/j.ast.2016.12.027
|
[8] |
WANG R H, LI Y Z, QIAO X G. Recent advances in multidimensional fiber Bragg grating accelerometers[J]. Journal of Lightwave Technology, 2023, 41(13): 4238-4247. doi: 10.1109/JLT.2023.3241953
|
[9] |
WEI L, JIANG D ZH, YU L L, et al. A novel miniaturized fiber Bragg grating vibration sensor[J]. IEEE Sensors Journal, 2019, 19(24): 11932-11940. doi: 10.1109/JSEN.2019.2936596
|
[10] |
徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学,2013,6(3):306-317.
XU G Q, XIONG D Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. (in Chinese).
|
[11] |
LI T L, GUO J X, TAN Y G, et al. Recent advances and tendency in fiber Bragg grating-based vibration sensor: a review[J]. IEEE Sensors Journal, 2020, 20(20): 12074-12087. doi: 10.1109/JSEN.2020.3000257
|
[12] |
吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学,2014,7(4):519-531.
WU J, WU H P, HUANG J B, et al. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4): 519-531. (in Chinese).
|
[13] |
FAN X Y, GE L, GE CH, et al. A dual oblique wing-based low-frequency FBG accelerometer[J]. Optical Fiber Technology, 2023, 81: 103526. doi: 10.1016/j.yofte.2023.103526
|
[14] |
ZHAO X F, JIA ZH A, FAN W, et al. A fiber Bragg grating acceleration sensor with temperature compensation[J]. Optik, 2021, 241: 166993. doi: 10.1016/j.ijleo.2021.166993
|
[15] |
YAO H ZH, LI Y Q, YANG Z. A novel fiber Bragg grating acceleration sensor for measurement of vibration[J]. Optik, 2016, 127(20): 8874-8882. doi: 10.1016/j.ijleo.2016.06.105
|
[16] |
ZHANG F X, JIANG SH D, WANG C, et al. Broadband and high sensitivity FBG accelerometer based on double diaphragms and h-shaped hinges[J]. IEEE Sensors Journal, 2021, 21(1): 353-359. doi: 10.1109/JSEN.2020.3013611
|
[17] |
FAN W, WEN J, GAO H, et al. Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever[J]. Optical Fiber Technology, 2022, 70: 102888. doi: 10.1016/j.yofte.2022.102888
|
[18] |
宋颖, 张浩然, 李剑芝, 等. 基于轴承和柔性铰链的布拉格光纤光栅加速度计[J]. 中国光学(中英文),2023,16(5):1109-1120. doi: 10.37188/CO.2022-0252
SONG Y, ZHANG H R, LI J ZH, et al. Fiber Bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. (in Chinese). doi: 10.37188/CO.2022-0252
|
[19] |
SONG H, SONG E ZH, PENG W, et al. Miniature structure optimization of small-diameter FBG-based one-dimensional optical fiber vibration sensor[J]. IEEE Sensors Journal, 2021, 21(23): 26763-26771. doi: 10.1109/JSEN.2021.3120139
|
[20] |
YAN B, LIANG L. A novel fiber Bragg grating accelerometer based on parallel double flexible hinges[J]. IEEE Sensors Journal, 2020, 20(9): 4713-4718. doi: 10.1109/JSEN.2019.2925017
|
[21] |
SHAO M, LIANG J J, GAO H, et al. Medium and low frequency fiber Bragg grating acceleration sensor based on single-sided single-arc hinge[J]. Optical Fiber Technology, 2022, 69: 102814. doi: 10.1016/j.yofte.2021.102814
|
[22] |
ZHANG L, LIU M Y, HONG L, et al. Design and optimization of an FBG accelerometer based on single-notch circular flexure hinge for medium-frequency vibration measurement[J]. IEEE Sensors Journal, 2022, 22(21): 20303-20311. doi: 10.1109/JSEN.2022.3207780
|
[23] |
LUO X D, LI Y F, FENG D Q, et al. Fiber Bragg grating accelerometer based on symmetrical double flexure hinges[J]. Optical Fiber Technology, 2022, 68: 102795. doi: 10.1016/j.yofte.2021.102795
|
[24] |
LE H D, CHIANG C C, NGUYEN C N, et al. A 2-D Fiber Bragg grating acceleration sensor based on circular flexure hinges structure[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 7004411.
|