Volume 17 Issue 6
Nov.  2024
Turn off MathJax
Article Contents
LIU Qiang, LI Wen-jing, MA Chao, WEI Shu-hui, FU Tian-shu, YU Bo, LIU Chao. Design of two-dimensional low-frequency fiber Bragg grating vibration sensor[J]. Chinese Optics, 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069
Citation: LIU Qiang, LI Wen-jing, MA Chao, WEI Shu-hui, FU Tian-shu, YU Bo, LIU Chao. Design of two-dimensional low-frequency fiber Bragg grating vibration sensor[J]. Chinese Optics, 2024, 17(6): 1450-1457. doi: 10.37188/CO.2024-0069

Design of two-dimensional low-frequency fiber Bragg grating vibration sensor

cstr: 32171.14.CO.2024-0069
Funds:  Supported by The Basic Research Support Project for the Excellent Youth Scholars of Heilongjiang Province (No. YQJH2023077)
More Information
  • Corresponding author: msm-liu@126.com
  • Received Date: 12 Apr 2024
  • Rev Recd Date: 30 Apr 2024
  • Accepted Date: 25 Jun 2024
  • Available Online: 21 Aug 2024
  • In order to acquire and monitor the low-frequency vibration signal, a two-dimensional vibration sensor with a symmetrical circular flexure hinge is designed, which can work in the x and z axes. The mechanical characteristics of the sensing structure are analyzed theoretically. The model is established in Comsol for simulation analysis, and the structure is optimized by finite element method. The hinge resonant frequency is designed to be 420 Hz. The fiber Bragg grating is pasted on the surface of the hinge structure as a strain detection device, and the dynamic demodulation of FBG is realized by the edge filter method. The performance of the sensor is tested with a standard shaking table. The experimental results show that the natural frequencies of the sensor in the x and z axes both are 420 Hz, the operating frequency range is 20−300 Hz, the average sensitivity in the flat region is 1847.32 mV/g, and the acceleration resolution is 5.41×10−4 g. The sensor demonstrates a less than 5% lateral interference level in all two-dimensional orientations. The sensor designed in this paper is a two-dimensional vibration sensor, which is suitable for highly sensitive detection of low-frequency vibration signals.

     

  • loading
  • [1]
    DU C, DUTTA S, KURUP P, et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111728. doi: 10.1016/j.sna.2019.111728
    [2]
    AZHAR A S, KUDUS S A, JAMADIN A, et al. Recent vibration-based structural health monitoring on steel bridges: systematic literature review[J]. Ain Shams Engineering Journal, 2024, 15(3): 102501. doi: 10.1016/j.asej.2023.102501
    [3]
    SONG G D, WANG J Y, LIU T Y, et al. Optical fiber grating strain acceleration sensors ground vibration experimental research[J]. Procedia Engineering, 2011, 26: 784-793. doi: 10.1016/j.proeng.2011.11.2238
    [4]
    JOHNSON SINGH M, CHOUDHARY S, CHEN W B, et al. Applications of fibre Bragg grating sensors for monitoring geotechnical structures: a comprehensive review[J]. Measurement, 2023, 218: 113171. doi: 10.1016/j.measurement.2023.113171
    [5]
    YÜKSEL K, KINET D, MOEYAERT V, et al. Railway monitoring system using optical fiber grating accelerometers[J]. Smart Materials and Structures, 2018, 27(10): 105033. doi: 10.1088/1361-665X/aadb62
    [6]
    ZHU L Q, SUN G K, BAO W M, et al. Structural deformation monitoring of flight vehicles based on optical fiber sensing technology: a review and future perspectives[J]. Engineering, 2022, 16: 39-55. doi: 10.1016/j.eng.2021.02.022
    [7]
    GAO ZH Y, ZHU X J, FANG Y B, et al. Active monitoring and vibration control of smart structure aircraft based on FBG sensors and PZT actuators[J]. Aerospace Science and Technology, 2017, 63: 101-109. doi: 10.1016/j.ast.2016.12.027
    [8]
    WANG R H, LI Y Z, QIAO X G. Recent advances in multidimensional fiber Bragg grating accelerometers[J]. Journal of Lightwave Technology, 2023, 41(13): 4238-4247. doi: 10.1109/JLT.2023.3241953
    [9]
    WEI L, JIANG D ZH, YU L L, et al. A novel miniaturized fiber Bragg grating vibration sensor[J]. IEEE Sensors Journal, 2019, 19(24): 11932-11940. doi: 10.1109/JSEN.2019.2936596
    [10]
    徐国权, 熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学,2013,6(3):306-317.

    XU G Q, XIONG D Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. (in Chinese).
    [11]
    LI T L, GUO J X, TAN Y G, et al. Recent advances and tendency in fiber Bragg grating-based vibration sensor: a review[J]. IEEE Sensors Journal, 2020, 20(20): 12074-12087. doi: 10.1109/JSEN.2020.3000257
    [12]
    吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学,2014,7(4):519-531.

    WU J, WU H P, HUANG J B, et al. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4): 519-531. (in Chinese).
    [13]
    FAN X Y, GE L, GE CH, et al. A dual oblique wing-based low-frequency FBG accelerometer[J]. Optical Fiber Technology, 2023, 81: 103526. doi: 10.1016/j.yofte.2023.103526
    [14]
    ZHAO X F, JIA ZH A, FAN W, et al. A fiber Bragg grating acceleration sensor with temperature compensation[J]. Optik, 2021, 241: 166993. doi: 10.1016/j.ijleo.2021.166993
    [15]
    YAO H ZH, LI Y Q, YANG Z. A novel fiber Bragg grating acceleration sensor for measurement of vibration[J]. Optik, 2016, 127(20): 8874-8882. doi: 10.1016/j.ijleo.2016.06.105
    [16]
    ZHANG F X, JIANG SH D, WANG C, et al. Broadband and high sensitivity FBG accelerometer based on double diaphragms and h-shaped hinges[J]. IEEE Sensors Journal, 2021, 21(1): 353-359. doi: 10.1109/JSEN.2020.3013611
    [17]
    FAN W, WEN J, GAO H, et al. Low-frequency fiber Bragg grating accelerometer based on diaphragm-type cantilever[J]. Optical Fiber Technology, 2022, 70: 102888. doi: 10.1016/j.yofte.2022.102888
    [18]
    宋颖, 张浩然, 李剑芝, 等. 基于轴承和柔性铰链的布拉格光纤光栅加速度计[J]. 中国光学(中英文),2023,16(5):1109-1120. doi: 10.37188/CO.2022-0252

    SONG Y, ZHANG H R, LI J ZH, et al. Fiber Bragg grating accelerometer based on flexure hinge and bearing[J]. Chinese Optics, 2023, 16(5): 1109-1120. (in Chinese). doi: 10.37188/CO.2022-0252
    [19]
    SONG H, SONG E ZH, PENG W, et al. Miniature structure optimization of small-diameter FBG-based one-dimensional optical fiber vibration sensor[J]. IEEE Sensors Journal, 2021, 21(23): 26763-26771. doi: 10.1109/JSEN.2021.3120139
    [20]
    YAN B, LIANG L. A novel fiber Bragg grating accelerometer based on parallel double flexible hinges[J]. IEEE Sensors Journal, 2020, 20(9): 4713-4718. doi: 10.1109/JSEN.2019.2925017
    [21]
    SHAO M, LIANG J J, GAO H, et al. Medium and low frequency fiber Bragg grating acceleration sensor based on single-sided single-arc hinge[J]. Optical Fiber Technology, 2022, 69: 102814. doi: 10.1016/j.yofte.2021.102814
    [22]
    ZHANG L, LIU M Y, HONG L, et al. Design and optimization of an FBG accelerometer based on single-notch circular flexure hinge for medium-frequency vibration measurement[J]. IEEE Sensors Journal, 2022, 22(21): 20303-20311. doi: 10.1109/JSEN.2022.3207780
    [23]
    LUO X D, LI Y F, FENG D Q, et al. Fiber Bragg grating accelerometer based on symmetrical double flexure hinges[J]. Optical Fiber Technology, 2022, 68: 102795. doi: 10.1016/j.yofte.2021.102795
    [24]
    LE H D, CHIANG C C, NGUYEN C N, et al. A 2-D Fiber Bragg grating acceleration sensor based on circular flexure hinges structure[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 7004411.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(155) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return