LI Bin, LIU Yin-ling, YANG A-kun, CHEN Mo. Broad-band co-phase detection based on denoising convolutional neural network[J]. Chinese Optics, 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079
Citation: LI Bin, LIU Yin-ling, YANG A-kun, CHEN Mo. Broad-band co-phase detection based on denoising convolutional neural network[J]. Chinese Optics, 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079

Broad-band co-phase detection based on denoising convolutional neural network

cstr: 32171.14.CO.2024-0079
Funds:  Supported by National Natural Science Foundation of China (No. 12103019); Natural Science Youth Foundation of Jiangxi Province (No. 20232BAB211023)
More Information
  • Corresponding author: li_liu202312@163.com
  • Received Date: 28 Apr 2024
  • Rev Recd Date: 22 May 2024
  • Accepted Date: 12 Jul 2024
  • Available Online: 21 Aug 2024
  • The co-phase error detection of segmented mirrors is currently a critical focus of scientific research. Co-phase detection technology based on a broad-band light source solves the problem of long measurement times caused by the Shackle-Hartmann method’s low target flow rates, thereby improving the accuracy and range of piston error detection. However, in the application of the current broad-band algorithm, the complex environment and the presence of disturbing factors such as camera perturbations cause the acquired circular aperture diffraction images to contain a certain amount of noise, which leads to a correlation coefficient value below the set threshold, reduces the accuracy of the method, and even makes it ineffective. To solve the problem, we propose a method by integrating an algorithm based on Denoising Convolutional Neural Network (DnCNN) into the broad-band algorithm in order to control the noise interference and retain the phase information of the far-field image. First, the circular hole diffraction image obtained by using MATLAB is used as the training data for DnCNN. After the training, the images with different noise levels are imported into the trained noise reduction model to obtain the denoised image as well as the peak signal-to-noise ratios of the circular hole diffraction images before and after denoising. The structural similarity between the two images and the clear and noiseless image are also obtained. The results indicate that the average structural similarity between the denoised image and the ideal clear image has significantly improved compared to the image before processing, and this achieves an ideal denoising effect, which effectively increases the ability of broad-band algorithms to cope with the effects of high noise conditions. This study has strong theoretical significance and application value for exploring the broad-band light source algorithm for applications in practical co-phase detection environments.

     

  • [1]
    霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文),2022,15(5):973-982. doi: 10.37188/CO.2022-0109

    HUO Y L, YANG F, WANG F G. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese). doi: 10.37188/CO.2022-0109
    [2]
    马舒凡, 鲜浩, 王胜千. 合成孔径系统平移误差的四棱锥传感器检测方法[J]. 激光与光电子学进展,2023,60(15):1528001.

    MA SH F, XIAN H, WANG SH Q. Detection of piston error of synthetic aperture system using pyramid sensor[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1528001. (in Chinese).
    [3]
    HUANG L SH, WANG J L, CHEN L, et al. Visible pyramid wavefront sensing approach for daylight adaptive optics[J]. Optics Express, 2022, 30(7): 10833-10849. doi: 10.1364/OE.449021
    [4]
    LI B, YANG A K, LI Y B, et al. Research on co-phasing detection of segmented mirror based on convolutioned neural networks[J]. Optics & Laser Technology, 2023, 167: 109737.
    [5]
    李斌, 杨阿坤, 邹吉平. 基于宽波段光源拼接镜新型共相检测技术研究[J]. 中国光学,2022,15(4):797-805. doi: 10.37188/CO.2021-0234

    LI B, YANG A K, ZOU J P. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. (in Chinese). doi: 10.37188/CO.2021-0234
    [6]
    SHEELA C J J, SUGANTHI G. An efficient denoising of impulse noise from MRI using adaptive switching modified decision based unsymmetric trimmed median filter[J]. Biomedical Signal Processing and Control, 2020, 55: 101657. doi: 10.1016/j.bspc.2019.101657
    [7]
    DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [8]
    GU SH H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014: 2862-2869.
    [9]
    李维勤, 白清, 昝伟, 等. 脉冲编码融合DnCNN提升BOTDA信噪比研究[J/OL]. 中国激光, 1-15[2024-04-24]. http://kns.cnki.net/kcms/detail/31.1339.TN.20240220.1406.092.html.

    LI W Q, BAI Q, ZAN W, et al. SNR enhancement for BOTDA by DnCNN and pulse coding[J/OL]. Chinese Journal of Lasers, 1-15[2024-04-24]. http://kns.cnki.net/kcms/detail/31.1339.TN.20240220.1406.092.html. (in Chinese).
    [10]
    SCHMIDT U, ROTH S. Shrinkage fields for effective image restoration[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014: 2774-2781.
    [11]
    CHEN Y J, POCK T. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256-1272. doi: 10.1109/TPAMI.2016.2596743
    [12]
    ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian Denoiser: residual learning of deep CNN for Image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. doi: 10.1109/TIP.2017.2662206
    [13]
    李斌, 杨阿坤, 孙赵祥, 等. 基于深度学习的拼接镜共相检测新方法研究[J]. 中国激光,2023,50(22):2204001. doi: 10.3788/CJL221357

    LI B, YANG A K, SUN ZH X, et al. Research on new co-phasing detection method of segmented mirror based on deep learning[J]. Chinese Journal of Lasers, 2023, 50(22): 2204001. (in Chinese). doi: 10.3788/CJL221357
    [14]
    GONZALEZ R R C, WOODS R E. Digital Image Processing[M]. 3rd ed. Noida, India: Pearson education india, 2009.
    [15]
    敬天成, 段红光, 赵旭, 等. 电力线载波通信中基于深度学习的信道估计[J]. 光通信研究,2024(2):220058.

    JING T CH, DUAN H G, ZHAO X, et al. Deep learning based channel estimation in PLC communication[J]. Study on Optical Communications, 2024(2): 220058. (in Chinese).
    [16]
    栗苹, 周宇, 曹荣刚, 等. 基于深度学习和双域融合的红外成像制导系统复杂背景噪声去除方法[J]. 兵工学报,2024,45(6):1747-1760. doi: 10.12382/bgxb.2023.0307

    LI P, ZHOU Y, CAO R G, et al. A denoising method for complex background noise of infrared imaging guidance system based on deep learning and dual-domain fusion[J]. Acta Armamentarii, 2024, 45(6): 1747-1760. (in Chinese). doi: 10.12382/bgxb.2023.0307
    [17]
    颜戚冰, 周先春, 昝明远, 等. 基于残差连接的并行网络去噪[J]. 计算机与数字工程,2023,51(9):2103-2108. doi: 10.3969/j.issn.1672-9722.2023.09.030

    YAN Q B, ZHOU X CH, ZAN M Y, et al. Parallel network denoising method based on residual connection[J]. Computer & Digital Engineering, 2023, 51(9): 2103-2108. (in Chinese). doi: 10.3969/j.issn.1672-9722.2023.09.030
    [18]
    LI D Q, XU SH Y, WANG D, et al. Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network[J]. Optics Express, 2019, 27(16): 22846-22854. doi: 10.1364/OE.27.022846
  • Relative Articles

    [1]WEI Rui-li, WANG Ming-jun, ZHOU Yi-ming, YI Fang. Modeling and correction of measurement errors based on depth cameras[J]. Chinese Optics, 2024, 17(2): 271-277. doi: 10.37188/CO.2023-0047
    [2]ZHAO Han-qi, LI Na, WU Bin, WU Gui-long, CHEN Yi-tong, FENG Xiao-fang, HE Pei-li, WEI Li. Nonlinear equalizer based on neural network in high-speed optical fiber communication systems[J]. Chinese Optics. doi: 10.37188/CO.2024-0114
    [3]CHEN Hui-bin, TANG Kai-fei, YOU Zhen-yu. Fully complex optical neural network with insertion-loss robustness[J]. Chinese Optics, 2024, 17(4): 834-841. doi: 10.37188/CO.2023-0198
    [4]ZHANG Kang-yang, NI Zi-hao, DONG Bo, BAI Yu-lei. Phase gradient estimation using Bayesian neural network[J]. Chinese Optics, 2024, 17(4): 842-851. doi: 10.37188/CO.2023-0168
    [5]ZHANG Jing-yuan, CHEN Bei-bei, YANG Yong-xing, ZHU Qing-sheng, LI Jin-peng, ZHAO Jin-biao. Positioning algorithm for laser spot center based on BP neural network and genetic algorithm[J]. Chinese Optics, 2023, 16(2): 407-414. doi: 10.37188/CO.2022-0084
    [6]ZHENG Yi-zhen, DAI Jian, ZHANG Tian, XU Kun. Multimodal feature fusion based on heterogeneous optical neural networks[J]. Chinese Optics, 2023, 16(6): 1343-1355. doi: 10.37188/CO.2023-0036
    [7]NIU Sheng-guang, GUO Liang, LU Zhen-yu, HAN Kang. Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis[J]. Chinese Optics, 2022, 15(5): 1000-1006. doi: 10.37188/CO.2022-0094
    [8]HUO Yin-long, YANG Fei, WANG Fu-guo. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. doi: 10.37188/CO.2022-0109
    [9]LI Bin, YANG A-kun, ZOU Ji-ping. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. doi: 10.37188/CO.2021-0234
    [10]FAN Wen-qiang, WANG Zhi-chen, CHEN Bao-gang, LI Hong-wen, CHEN Tao, AN Qi-chang, FAN Lei. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032
    [11]CHEN Xiao-Dong, AI Da-Hang, ZHANG Jia-Chen, CAI Huai-Yu, CUI Ke-Rang. Gabor filter fusion network for pavement crack detection[J]. Chinese Optics, 2020, 13(6): 1293-1301. doi: 10.37188/CO.2020-0041
    [12]WANG Chun-zhe, AN Jun-she, JIANG Xiu-jie, XING Xiao-xue. Region proposal optimization algorithm based on convolutional neural networks[J]. Chinese Optics, 2019, 12(6): 1348-1361. doi: 10.3788/CO.20191206.1348
    [13]QIAN Wei-zhu, YANG Li-bao. A fiber optic gyro error compensation method based on wavelet neural network[J]. Chinese Optics, 2018, 11(6): 1024-1031. doi: 10.3788/CO.20181106.1024
    [14]CHEN Yue, ZHAO Yan, WANG Shi-gang. Fast image stitching method based on SIFT with adaptive local image feature[J]. Chinese Optics, 2016, 9(4): 415-422. doi: 10.3788/CO.20160904.0415
    [15]HUANG Long, PAN Nian, MA Wen-li, HUANG Jin-long. Error analysis and experimentation of scale tape encoder[J]. Chinese Optics, 2015, 8(3): 464-470. doi: 10.3788/CO.20150803.0464
    [16]DAI Xiao-ke, JIN Chun-shui, Yu Jie. Analysis on error and tolerance for the wavefront reference source of point diffraction interferometer[J]. Chinese Optics, 2014, 7(5): 855-862. doi: 10.3788/CO.20140705.0855
    [17]PAN Nian, MA Wen-li. Error analysis and correction of scale tape grating encoder[J]. Chinese Optics, 2013, 6(5): 788-794. doi: 10.3788/CO.20130605.0788
    [18]WANG Xiao-kun. Compensation of misalignment error on testing aspheric surface by subaperture stitching interferometry[J]. Chinese Optics, 2013, 6(1): 88-95. doi: 10.3788/CO.20130601.0088
    [19]CHEN Bao-gang, ZHANG Jing-xu, YANG Fei, DONG Lei, WANG Fu-guo. Design of segment support module of collecting light mirror in Fourier telescope for field experiment[J]. Chinese Optics, 2009, 2(4): 329-333.
    [20]XU Zhi-jun, HONG Xi, YU Xin. Improvement of precision of encoder[J]. Chinese Optics, 2008, 1(1): 62-65.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-012024-022024-032024-042024-052024-062024-072024-082024-092024-102024-112024-12010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.6 %FULLTEXT: 30.6 %META: 53.6 %META: 53.6 %PDF: 15.9 %PDF: 15.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 1.6 %其他: 1.6 %Seattle: 2.0 %Seattle: 2.0 %中卫: 8.7 %中卫: 8.7 %佛山: 0.4 %佛山: 0.4 %北京: 1.6 %北京: 1.6 %南京: 0.4 %南京: 0.4 %南充: 0.4 %南充: 0.4 %南昌: 1.2 %南昌: 1.2 %台州: 0.4 %台州: 0.4 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %宜昌: 0.4 %宜昌: 0.4 %广州: 5.1 %广州: 5.1 %张家口: 1.2 %张家口: 1.2 %成都: 0.4 %成都: 0.4 %扬州: 1.2 %扬州: 1.2 %昆明: 1.2 %昆明: 1.2 %杭州: 3.2 %杭州: 3.2 %森尼韦尔: 0.4 %森尼韦尔: 0.4 %武汉: 3.2 %武汉: 3.2 %洛阳: 0.4 %洛阳: 0.4 %淄博: 0.4 %淄博: 0.4 %深圳: 0.4 %深圳: 0.4 %湖州: 0.8 %湖州: 0.8 %漯河: 1.2 %漯河: 1.2 %芒廷维尤: 16.6 %芒廷维尤: 16.6 %芝加哥: 1.6 %芝加哥: 1.6 %衢州: 0.8 %衢州: 0.8 %西宁: 3.2 %西宁: 3.2 %西雅图: 0.4 %西雅图: 0.4 %诺沃克: 1.6 %诺沃克: 1.6 %费利蒙: 0.4 %费利蒙: 0.4 %运城: 0.4 %运城: 0.4 %连云港: 0.4 %连云港: 0.4 %重庆: 0.8 %重庆: 0.8 %长春: 28.1 %长春: 28.1 %长沙: 2.4 %长沙: 2.4 %阿姆斯特丹: 0.4 %阿姆斯特丹: 0.4 %青岛: 0.8 %青岛: 0.8 %马鞍山: 0.8 %马鞍山: 0.8 %其他其他Seattle中卫佛山北京南京南充南昌台州天津太原宜昌广州张家口成都扬州昆明杭州森尼韦尔武汉洛阳淄博深圳湖州漯河芒廷维尤芝加哥衢州西宁西雅图诺沃克费利蒙运城连云港重庆长春长沙阿姆斯特丹青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article views(135) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return