Citation: | SUN Ao, WANG Rui-Peng, SUN Yu-Qi, WANG Xin-Yu, LI Wen-Hao, JIANG Yan-Xiu. Design and analysis of double-layer trapezoidal groove of polarization-independent beam-combination gratings with high diffraction efficiency[J]. Chinese Optics. doi: 10.37188/CO.2024-0083 |
In order to meet the needs of broad band, high diffraction efficiency and polarization independent, a double-layer trapezoidal polarization independent beam grating is proposed in this paper. Firstly, based on the strict coupled wave theory, a design model of polarimetric independent combined beam grating based on particle swarm optimization algorithm is established, and the efficiency characteristics are optimized by randomly generating characteristic wavelengths. Then, the effects of slot depth, width ratio, side Angle and other structural parameters on the diffraction efficiency and bandwidth of single-layer and double-layer trapezoidal grating are analyzed in detail. Finally, the electric field enhancement characteristics of the two structures are analyzed and discussed. The results show that the double-layer trapezoidal polarimetric beam independent grating achieves a theoretical diffraction efficiency of more than 99% in the bandwidth range of 51 nm (
[1] |
游道明, 谭满清, 郭文涛, 等. 光纤光栅外腔激光器光学薄膜的研制[J]. 中国光学(中英文),2023,16(2):447-457. doi: 10.37188/CO.EN.2022-0010
YOU D M, TAN M Q, GUO W T, et al. Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers[J]. Chinese Optics, 2023, 16(2): 447-457. (in Chinese). doi: 10.37188/CO.EN.2022-0010
|
[2] |
田思聪, 佟存柱, 王立军, 等. 长春光机所高速垂直腔面发射激光器研究进展[J]. 中国光学(中英文),2022,15(5):946-953. doi: 10.37188/CO.2022-0136
TIAN S C, TONG C ZH, WANG L J, et al. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. (in Chinese). doi: 10.37188/CO.2022-0136
|
[3] |
吴玲, 娄岩, 侯欣宜, 等. 2-μm MOPA结构全光纤激光器输出特性研究[J]. 中国光学(中英文),2023,16(2):399-406. doi: 10.37188/CO.2022-0191
WU L, LOU Y, HOU X Y, et al. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. (in Chinese). doi: 10.37188/CO.2022-0191
|
[4] |
LIU J Q, ZENG L F, WANG X L, et al. Optimization and demonstration of a bidirectional output linear-cavity fiber laser with a record high power of 2×4 kW[J]. Optics & Laser Technology, 2024, 169: 110031.
|
[5] |
LI S CH, XU J M, LIANG J R, et al. Multi-wavelength random fiber laser with a spectral-flexible characteristic[J]. Photonics Research, 2023, 11(2): 159-164. doi: 10.1364/PRJ.475233
|
[6] |
HUANG B, WANG J Q, SHAO X P. Fiber-based techniques to suppress stimulated brillouin scattering[J]. Photonics, 2023, 10(3): 282. doi: 10.3390/photonics10030282
|
[7] |
CHEN CH W, NGUYEN L V, WISAL K, et al. Mitigating stimulated Brillouin scattering in multimode fibers with focused output via wavefront shaping[J]. Nature Communications, 2023, 14(1): 7343. doi: 10.1038/s41467-023-42806-1
|
[8] |
LIU ZH J, WANG Q, ZHANG W SH, et al. Suppression of stimulated Brillouin scattering by multicolor alternating-polarization bundle light in inertial confinement fusion[J]. Physics of Plasmas, 2023, 30(3): 032703. doi: 10.1063/5.0137403
|
[9] |
DAWSON J W, MESSERLY M J, BEACH R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
|
[10] |
DONG L, BALLATO J, KOLIS J. Revising power scaling limits of diffraction-limited fiber amplifiers[J]. Proceedings of SPIE, 2024, 12865: 128650H.
|
[11] |
COOK J, SINCORE A, VAIL N, et al. 100 W, tunable in-band thulium fiber amplifier pumped by incoherently combined 1.9 µm fiber lasers[J]. Optics Express, 2023, 31(18): 29245-29254. doi: 10.1364/OE.487601
|
[12] |
GAO Q, LI ZH, ZHAO W, et al. Spectral beam combining of fiber lasers with 32 channels[J]. Optical Fiber Technology, 2023, 78: 103311. doi: 10.1016/j.yofte.2023.103311
|
[13] |
LI J Y, YANG ZH D, WANG Y Y, et al. A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: optical and thermal performance investigations[J]. Renewable Energy, 2023, 206: 609-622. doi: 10.1016/j.renene.2023.02.078
|
[14] |
ZHANG Q S, WU ZH, CAI W, et al. Spectral-combined beam characteristics based on external cavity feedback diode laser array[J]. Optical Engineering, 2023, 62(5): 056101.
|
[15] |
YU X Y, YANG W J, SHEN CH Y, et al. Polarization beam combining by fused silica subwavelength grating[J]. Optics Communications, 2024, 554: 130135. doi: 10.1016/j.optcom.2023.130135
|
[16] |
HONEA E, AFZAL R S, SAVAGE-LEUCHS M, et al. Advances in fiber laser spectral beam combining for power scaling[J]. Proceedings of SPIE, 2016, 9730: 97300Y.
|
[17] |
马毅, 颜宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光,2016,43(9):0901009. doi: 10.3788/CJL201643.0901009
MA Y, YAN H, PENG W J, et al. 9.6 kW Common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese Journal of Lasers, 2016, 43(9): 0901009. (in Chinese). doi: 10.3788/CJL201643.0901009
|
[18] |
郑也, 杨依枫, 赵翔, 等. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光,2017,44(2):0201002. doi: 10.3788/CJL201744.0201002
ZHENG Y, YANG Y F, ZHAO X, et al. Research progress on spectral beam combining technology of high-power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002. (in Chinese). doi: 10.3788/CJL201744.0201002
|
[19] |
晋云霞, 韩昱行, 曹红超, 等. 近红外强激光与反射式全息平面衍射光栅的交织发展[J]. 中国激光,2024,51(11):1101028.
JIN Y X, HAN Y X, CAO H CH, et al. Intertwined development of near-infrared high-power lasers and reflective holographic surface-relief diffraction gratings[J]. Chinese Journal of Lasers, 2024, 51(11): 1101028. (in Chinese).
|
[20] |
HU A D, ZHOU CH H, CAO H CH, et al. Polarization-independent wideband mixed metal dielectric reflective gratings[J]. Applied Optics, 2012, 51(20): 4902-4906. doi: 10.1364/AO.51.004902
|
[21] |
申碧瑶, 曾理江, 李立峰, 等. 多层介质膜偏振无关光栅的研制[J]. 强激光与粒子束,2015,27(11):111013. doi: 10.11884/HPLPB201527.111013
SHEN B Y, ZENG L J, LI L F, et al. Fabrication of polarization independent gratings made on multilayer dielectric thin film substrates[J]. High Power Laser and Particle Beams, 2015, 27(11): 111013. (in Chinese). doi: 10.11884/HPLPB201527.111013
|
[22] |
CHEN J M, ZHANG Y B, WANG Y L, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. doi: 10.1364/OL.42.004016
|
[23] |
CAO H CH, WU J, YU J J, et al. High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating[J]. Applied Optics, 2018, 57(4): 900-904. doi: 10.1364/AO.57.000900
|
[24] |
CHO H J, KIM S J, KIM K D, et al. Simply structured polarization-independent high efficiency multilayer dielectric gratings[J]. Applied Optics, 2022, 61(28): 8446-8453. doi: 10.1364/AO.469253
|
[25] |
朱春霖, 焦庆斌, 谭鑫, 等. 应用于亚波长角向偏振金属光栅设计的快速收敛粒子群算法优化[J]. 光学学报,2019,39(7):0705002. doi: 10.3788/AOS201939.0705002
ZHU CH L, JIAO Q B, TAN X, et al. Fast convergent particle swarm optimization algorithm for subwavelength azimuthally polarized metal grating design[J]. Acta Optica Sinica, 2019, 39(7): 0705002. (in Chinese). doi: 10.3788/AOS201939.0705002
|
[26] |
FANG J ZH, LIU W B, CHEN L W, et al. A survey of algorithms, applications and trends for particle swarm optimization[J]. International Journal of Network Dynamics and Intelligence, 2023, 2(1): 24-50.
|
[27] |
NAYAK J, SWAPNAREKHA H, NAIK B, et al. 25 Years of particle swarm optimization: flourishing voyage of two decades[J]. Archives of Computational Methods in Engineering, 2023, 30(3): 1663-1725. doi: 10.1007/s11831-022-09849-x
|
[28] |
唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.
TANG J F, GU P F, LIU X, et al. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006. (in Chinese).
|
[29] |
LI L X, LIU Q, CHEN J M, et al. Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system[J]. Optics Communications, 2017, 385: 97-103. doi: 10.1016/j.optcom.2016.10.048
|
[30] |
MAO X Y, LI CH M, QIU K Q, et al. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining[J]. Optics Communications, 2020, 458: 124883. doi: 10.1016/j.optcom.2019.124883
|
[31] |
CHEN J M, ZHANG Y B, WANG Y L, et al. Polarization-independent broadband beam combining grating with over 98% measured diffraction efficiency from 1023 to 1080 nm[J]. Optics Letters, 2017, 42(19): 4016-4019. (查阅网上资料, 本条文献与第22条文献重复, 请确认) .
|
[32] |
HAN Y X, CAO H CH, KONG F Y, et al. All- and mixed-dielectric grating for Nd: glass-based high-energy pulse compression[J]. High Power Laser Science and Engineering, 2023, 11: e60. doi: 10.1017/hpl.2023.39
|
[33] |
MOHARAM M G, POMMET D A, GRANN E B, et al. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach[J]. Journal of the Optical Society of America A, 1995, 12(5): 1077-1086. doi: 10.1364/JOSAA.12.001077
|
[34] |
LALANNE P, JUREK M P. Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization[J]. Journal of Modern Optics, 1998, 45(7): 1357-1374. doi: 10.1080/09500349808230634
|
[35] |
GAO F H, WANG CH CH, TANG X G, et al. Near field analysis for periodic diffractive gratings using Fourier modal method[J]. Microelectronic Engineering, 2006, 83(4-9): 1062-1066. doi: 10.1016/j.mee.2006.01.044
|