Turn off MathJax
Article Contents
CAO Zhao-jin, SONG Xiao-li, FAN Ren-Qiu, ZHANG Chao. Improved integral sliding mode control strategy for the segmented are permanent magnet synchronous motor based on dual observer[J]. Chinese Optics. doi: 10.37188/CO.2024-0085
Citation: CAO Zhao-jin, SONG Xiao-li, FAN Ren-Qiu, ZHANG Chao. Improved integral sliding mode control strategy for the segmented are permanent magnet synchronous motor based on dual observer[J]. Chinese Optics. doi: 10.37188/CO.2024-0085

Improved integral sliding mode control strategy for the segmented are permanent magnet synchronous motor based on dual observer

cstr: 32171.14.CO.2024-0085
Funds:  Supported by The National Natural Science Foundation of China (No. 12373096, No. 11673045)
More Information
  • Corresponding author: xlsong@niaot.ac.cn
  • Received Date: 07 May 2024
  • Rev Recd Date: 13 Jun 2024
  • Accepted Date: 23 Jul 2024
  • Available Online: 21 Aug 2024
  • With its high torque ratio and stable low-speed operation, the Segmented Arc Permanent Magnet Synchronous Motor (SAPMSM) provides high-performance drive technology support for large-aperture astronomical telescope observations. Improving the motor’s performance is challenging due to various internal and external interferences during its operation, such as parameter distortion, harmonics, etc. To this end, this paper proposes an integral sliding mode controller based on a new reaching law and a hybrid control strategy that combines an expanded state observer and a load observer, aiming to optimize the traditional sliding mode control and enhance the system’s anti-interference ability. The traditional reaching law has complicated parameters and cannot suppress chattering well. The new reaching law simplifies the parameters and effectively overcomes the system chattering. Second, an expanded state observer is used to estimate the feedback speed. Then, the q-axis current information and the estimated precise speed data are combined as the input of the load torque observer. This further improves the load observation performance and converts the load observation value into current for pre-processing. Feedback compensation is used to improve the motor’s anti-interference performance. Simulation and experimental results show that the proposed dual observer method can accurately observe the motor's speed and load, significantly enhancing the motor’s ability to resist load disturbances. At the same time, the new sliding mode speed controller reduces the motor speed overshoot and suppresses the buffeting of the sliding mode to a certain extent, providing theoretical and experimental support for arc motors in high-precision observation applications of large-aperture astronomical telescopes.

     

  • loading
  • [1]
    霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文),2022,15(5):973-982. doi: 10.37188/CO.2022-0109

    HUO Y L, YANG F, WANG F G. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese). doi: 10.37188/CO.2022-0109
    [2]
    SONG X L, CAO ZH J. Research on control strategy of hamiltonian theory for large telescope based on SAPMSM[J]. IEEE Access, 2024, 12: 31960-31967. doi: 10.1109/ACCESS.2024.3368880
    [3]
    朱泳廷, 张泽. 基于音圈电机的柔性杆自抗扰LQR抑振控制算法研究[J]. 振动与冲击,2023,42(22):283-292.

    ZHU Y T, ZHANG Z. Algorithm for the LQR active disturbance rejection control of a flexible beam for vibration suppression based on voice coil motors[J]. Journal of Vibration and Shock, 2023, 42(22): 283-292. (in Chinese).
    [4]
    ZHAO X M, GONG Y W, JIN H Y, et al. Adaptive super-twisting-based nonsingular fast terminal sliding mode control of permanent magnet linear synchronous motor[J]. Transactions of the Institute of Measurement and Control, 2023, 45(16): 3057-3066. doi: 10.1177/01423312231162782
    [5]
    SUN Y P, LAN Y P, SHI X L, et al. Variable speed sliding mode control of magnetic suspension linear synchronous motor based on feedback linearization[J]. Journal of Mechanical Science and Technology, 2023, 37(11): 5843-5853. doi: 10.1007/s12206-023-1023-3
    [6]
    ZHOU N, DENG W X, YANG X W, et al. Continuous adaptive integral recursive terminal sliding mode control for DC motors[J]. International Journal of Control, 2023, 96(9): 2190-2200. doi: 10.1080/00207179.2022.2086928
    [7]
    MOGHANNI-BAVIL-OLYAEI M R, KEIGHOBADI J, GHANBARI A, et al. Passivity-based hierarchical sliding mode control/observer of underactuated mechanical systems[J]. Journal of Vibration and Control, 2023, 29(13-14): 3096-3111. doi: 10.1177/10775463221091035
    [8]
    WU Y Q, YU J B, ZHANG ZH C. Output feedback regulation control for a class of cascade nonlinear systems by time-varying Kalman observer[J]. International Journal of Robust and Nonlinear Control, 2019, 29(7): 2149-2170. doi: 10.1002/rnc.4485
    [9]
    YUE B Y, CHENG Q M, CHENG Y M. Robustness improvement model predictive control strategy based on Luenberger observer for Y-type modular multilevel converter[J]. International Journal of Circuit Theory and Applications, 2023, 51(12): 5672-5690. doi: 10.1002/cta.3731
    [10]
    LU E, LI W, YANG X F, et al. Anti-disturbance speed control of low-speed high-torque PMSM based on second-order non-singular terminal sliding mode load observer[J]. ISA Transactions, 2019, 88: 142-152. doi: 10.1016/j.isatra.2018.11.028
    [11]
    LI ZH, FENG SH D, WANG J S, et al. Design of model-free position controller for PMSLM based on hyperlocal model[J]. Electrical Engineering, 2023, 105(4): 2361-2372. doi: 10.1007/s00202-023-01813-7
    [12]
    SHU H Y, GUO CH, SONG Y T, et al. Design of model predictive controllers for PMSM drive system based on the extended Kalman filter observer[J]. International Journal of Electric and Hybrid Vehicles, 2019, 11(4): 378-394. doi: 10.1504/IJEHV.2019.102887
    [13]
    SUN ZH Y, TAN C, LI B, et al. Dual model predictive control strategy of direct-drive PMSM based on sliding mode disturbance observer[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2024, 19(4): 527-534. doi: 10.1002/tee.24001
    [14]
    LIU H X, MEI K Q, LIU L, et al. Fixed-time non-singular terminal sliding mode control for PMSM drive systems[J]. Journal of Power Electronics, 2024, 24(2): 258-268. doi: 10.1007/s43236-023-00727-8
    [15]
    LIU L, LIU Y X, ZHOU L L, et al. Cascade ADRC with neural network-based ESO for hypersonic vehicle[J]. Journal of the Franklin Institute, 2023, 360(12): 9115-9138. doi: 10.1016/j.jfranklin.2022.09.019
    [16]
    张海洋, 许海平, 方程, 等. 基于负载转矩观测器的直驱式永磁同步电机新型速度控制器设计[J]. 电工技术学报,2018,33(13):2923-2934.

    ZHANG H Y, XU H P, FANG CH, et al. Design of a novel speed controller for direct-drive permanent magnet synchronous motor based on load torque observer[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 2923-2934. (in Chinese).
    [17]
    王东辉, 孔国利, 陈书立. 采用滑模观测器的机载激光通信视轴精度控制[J]. 红外与激光工程,2022,51(3):20210460. doi: 10.3788/IRLA20210460

    WANG D H, KONG G L, CHEN SH L. Precision control of airborne laser communication optical axis using sliding mode observer[J]. Infrared and Laser Engineering, 2022, 51(3): 20210460. (in Chinese). doi: 10.3788/IRLA20210460
    [18]
    ZHANG ZH C, LI L, WU Y Q. Disturbance-observer-based antiswing control of underactuated crane systems via terminal sliding mode[J]. IET Control Theory & Applications, 2018, 12(18): 2588-2594.
    [19]
    MA H F, LI Y M, XIONG ZH H. Discrete-time sliding-mode control with enhanced power reaching law[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4629-4638. doi: 10.1109/TIE.2018.2864712
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article views(133) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return