SHEN Xin-jian, LUO Zi-xun, WU Jian, LI Bin, LIU Yan-de, CHEN Nan. Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS[J]. Chinese Optics, 2025, 18(2): 307-316. doi: 10.37188/CO.2024-0107
Citation: SHEN Xin-jian, LUO Zi-xun, WU Jian, LI Bin, LIU Yan-de, CHEN Nan. Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS[J]. Chinese Optics, 2025, 18(2): 307-316. doi: 10.37188/CO.2024-0107

Determination of rare earth elements in liquid-phase samples by superhydrophobic array-assisted spark-discharge LIBS

cstr: 32171.14.CO.2024-0107
Funds:  Supported by National Key Research and Development Program of China (No. 2022YFD2001804, No. 2023YFD2001301); National Natural Science Foundation of China (No. 12304447); Natural Science Foundation of Jiangxi Province (No. 20242BAB20060);Training Program for Academic and Technical Leaders in Key Disciplines of Gan Poyang Talents (No. 20243BCE51173)
More Information
  • Corresponding author: chennan@ecjtu.edu.cn
  • Received Date: 05 Jun 2024
  • Rev Recd Date: 09 Jul 2024
  • Available Online: 11 Nov 2024
  • Rapid determination of rare earth elements (REEs) in liquid-phase samples is of great significance in the fields of ion-adsorption rare earth resource exploration and exploitation, quality control of extraction processes, recycling of rare earth resources, and nuclear industry wastewater monitoring. In order to reduce the detection limit of REEs in liquid samples by laser-induced breakdown spectroscopy (LIBS), superhydrophobic array-assisted spark-enhanced laser-induced breakdown spectroscopy (SHA-SD-LIBS) was used in this study to determine the REEs in liquid-phase samples. Optimal experimental conditions were chosen to measure the REEs with the parameters of La II 394.91 nm, Er 402.051 nm, Ce II 418.66 nm, Nd II 424.738 nm, Gd II 443.063 nm, and Pr 492.46 nm as the characteristic spectral lines, and the calibration curves were established for the quantitative analysis of the solutions of six rare earth elements (La, Er, Ce, Nd, Gd and Pr) with different concentrations. The results show that the fit coefficients R2 of the calibration curves were above 0.99. The corresponding detection limits were 0.007 μg/mL, 0.045 μg/mL, 0.011 μg/mL, 0.019 μg/mL, 0.041 μg/mL, and 0.008 μg/mL. The proposed method is a simple, low-cost, and highly efficient way to improve the quality of the liquid-phase sample. Compared with the conventional LIBS method, the proposed method can significantly reduce the detection limit of REEs in liquid phase samples with simple sample preparation and low cost. It can serve as a basis for new rapid and accurate methods of measuring rare earth element types and contents in liquid phase samples.

     

  • [1]
    BALARAM V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303. doi: 10.1016/j.gsf.2018.12.005
    [2]
    任权兵,钟鸣,郑波,等. 稀土元素改性钒基固溶体储氢合金研究进展[J]. 应用化学,2023,40(12):1601-1612.

    REN Quan-Bing, ZHONG Ming, ZHENG Bo, et al. Research Progress on Rare Earth Element Modified V-Based Solid Solution Hydrogen Storage Alloys[J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1601-1612. (in Chinese)
    [3]
    张瑞起,常宇,刘作家,等. 稀土荧光探针用于快速检测乙肝表面抗原[J]. 应用化学,2024,41(12):1760-1769.

    ZHANG R Q, CHANG Y, LIU Z J, et al. Rare earth fluorescent probes for rapid detection of hepatitis B surface antigen[J]. Chinese Journal of Analytical Chemistry, 2024, 41(12): 1760-1769. (in Chinese)
    [4]
    刘宏伟,陈雪峰,黎树春,等. 电感耦合等离子体串联质谱测定高纯稀土及稀土氧化物中超痕量铁[J]. 分析化学,2023,51(9):1518-1525.

    LIU H W, CHEN X F, LI SH C H, et al. Determination of ultra-trace iron in high purity rare earth and rare earth oxide by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2023, 51(9): 1518-1525. (in Chinese)
    [5]
    商宗玲, 张弨, 赵凤玉. 稀土修饰对Cu/Al2O3催化乙酰丙酸乙酯加氢性能的影响[J]. 应用化学,2024,41(3):340-348.

    SHANG Z L,ZHANG CH,ZHAO F Y. Effect of Rare Earth Modification on the Catalytic Performances of Cu/Al2O3-Based Catalysts for Hydrogenolysis of Ethyl Levulinate[J]. Chinese Journal of Analytical Chemistry, 2024, 41(3): 340-348. (in Chinese)
    [6]
    MIGASZEWSKI Z M, GAŁUSZKA A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(5): 429-471. doi: 10.1080/10643389.2013.866622
    [7]
    HAQUE N, HUGHES A, LIM S, et al. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact[J]. Resources, 2014, 3(4): 614-635. doi: 10.3390/resources3040614
    [8]
    CHEN Z Y, LI ZH, CHEN J, et al. Recent advances in selective separation technologies of rare earth elements: a review[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107104. doi: 10.1016/j.jece.2021.107104
    [9]
    AMBAYE T G, VACCARI M, CASTRO F D, et al. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: a review on progress, challenges, and perspectives[J]. Environmental Science and Pollution Research, 2020, 27(29): 36052-36074. doi: 10.1007/s11356-020-09630-2
    [10]
    R. TODAY. Apple sets recycled-content goals for 2025[EB/OL]. https://www.recyclingtoday.com/news/apple-sets-2025-recycled-content-goals/.
    [11]
    ANDRADE D F, PEREIRA-FILHO E R, AMARASIRIWARDENA D. Current trends in laser-induced breakdown spectroscopy: a tutorial review[J]. Applied Spectroscopy Reviews, 2021, 56(2): 98-114. doi: 10.1080/05704928.2020.1739063
    [12]
    刘小亮, 孙少华, 孟祥厅, 等. 激光诱导击穿光谱法测定稀土矿区土壤中钐含量[J]. 中国光学,2022,15(4):712-721. doi: 10.37188/CO.2022-0042

    LIU X L, SUN SH H, MENG X T, et al. Measurement of Sm in rare earth mineral soil using laser-induced breakdown spectroscopy[J]. Chinese Optics, 2022, 15(4): 712-721. (in Chinese). doi: 10.37188/CO.2022-0042
    [13]
    RETHFELDT N, BRINKMANN P, RIEBE D, et al. Detection of rare earth elements in minerals and soils by laser-induced breakdown spectroscopy (LIBS) using interval PLS[J]. Minerals, 2021, 11(12): 1379. doi: 10.3390/min11121379
    [14]
    HE ZH Q, LIU L, HE ZH Q, et al. Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction[J]. Plasma Science and Technology, 2023, 25(12): 125504. doi: 10.1088/2058-6272/ace954
    [15]
    李悦, 张国霞, 蔡朝晴, 等. 大气压辉光放电结合圆柱约束增强激光诱导击穿光谱应用于土壤中稀土元素的检测[J]. 分析化学,2022,50(9):1384-1390.

    LI Y, ZHANG G X, CAI ZH Q, et al. Atmospheric pressure glow discharge combined with cylindrical confinement enhanced laser-induced breakdown spectroscopy for determination of rare earth in soil[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1384-1390. (in Chinese).
    [16]
    LI X Q, YAN CH H, AN D Y, et al. Rapid quantitative analysis of rare earth elements Lu and Y in rare earth ores by laser induced breakdown spectroscopy combined with iPLS-VIP and partial least squares[J]. RSC Advances, 2023, 13(22): 15347-15355. doi: 10.1039/D3RA02102E
    [17]
    DENG ZH W, HAO ZH Q, LIU L, et al. Detection of Y, La, Yb, and Dy elements in rare earth ores by double-pulse laser-induced breakdown spectroscopy[J]. Journal of Laser Applications, 2023, 35(2): 022003. doi: 10.2351/7.0000936
    [18]
    LIU Y L, WANG D M, REN X H. Rapid quantitation of coal proximate analysis by using laser-induced breakdown spectroscopy[J]. Energies, 2022, 15(8): 2728. doi: 10.3390/en15082728
    [19]
    MAITY U K, MANORAVI P, JOSEPH M, et al. Laser-induced breakdown spectroscopy for simultaneous determination of lighter lanthanides in actinide matrix in aqueous medium[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 190: 106393. doi: 10.1016/j.sab.2022.106393
    [20]
    HE Q, QIU J, CHEN J F, et al. Progress in green and efficient enrichment of rare earth from leaching liquor of ion adsorption type rare earth ores[J]. Journal of Rare Earths, 2022, 40(3): 353-364. doi: 10.1016/j.jre.2021.09.011
    [21]
    KEERTHI K, GEORGE S D, KULKARNI S D, et al. Elemental analysis of liquid samples by laser induced breakdown spectroscopy (LIBS): challenges and potential experimental strategies[J]. Optics & Laser Technology, 2022, 147: 107622.
    [22]
    侯冠宇, 王平, 佟存柱. 激光诱导击穿光谱技术及应用研究进展[J]. 中国光学,2013,6(4):490-500.

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. (in Chinese).
    [23]
    SKOČOVSKÁ K, NOVOTNÝ J, PROCHAZKA D, et al. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis[J]. Review of Scientific Instruments, 2016, 87(4): 043116. doi: 10.1063/1.4947233
    [24]
    CONTRERAS V, VALENCIA R, PERALTA J, et al. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy[J]. Optics Letters, 2018, 43(10): 2260-2263. doi: 10.1364/OL.43.002260
    [25]
    WILLIAMS A N, PHONGIKAROON S. Elemental detection of cerium and gadolinium in aqueous aerosol using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2016, 70(10): 1700-1708. doi: 10.1177/0003702816648327
    [26]
    ITO Y, UEKI O, NAKAMURA S. Determination of colloidal iron in water by laser-induced breakdown spectroscopy[J]. Analytica chimica acta, 1995, 299(3): 401-405. doi: 10.1016/0003-2670(94)00313-B
    [27]
    TIAN H W, JIAO L Z, DONG D M. Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment[J]. Scientific Reports, 2019, 9(1): 10443. doi: 10.1038/s41598-019-46924-z
    [28]
    CHEN N, SHEN X J, LI B, et al. Sensitive determination of rare earth elements in liquid samples by spatial confinement assisted surface enhanced laser-induced breakdown spectroscopy[J]. Optics & Laser Technology, 2024, 170: 110279.
    [29]
    任文心, 杨亮, 赵韩, 等. 激光诱导击穿光谱定量分析全血中的锂元素[J]. 分析化学,2024,52(4):559-565.

    REN W X, YANG L, ZHAO H, et al. Quantitative analysis of lithium element in whole blood using laser-induced breakdown spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2024, 52(4): 559-565. (in Chinese).
    [30]
    DONG D M, JIAO L Z, DU X F, et al. Ultrasensitive nanoparticle enhanced laser-induced breakdown spectroscopy using a super-hydrophobic substrate coupled with magnetic confinement[J]. Chemical Communications, 2017, 53(33): 4546-4549. doi: 10.1039/C6CC09695F
    [31]
    ABU KASIM A F, WAKIL M A, GRANT K, et al. Aqueous ruthenium detection by microwave-assisted laser induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(8): 084004. doi: 10.1088/2058-6272/ac6733
    [32]
    WANG M P, PAN C Y, LU Y, et al. Detection of copper in solution by laser-induced breakdown spectroscopy based on nanoparticle chip[J]. Optical Engineering, 2022, 61(6): 061408.
    [33]
    ALKALLAS F H, MOSTAFA A M, TRABELSI A B G, et al. Effect of single and double pulse laser-induced breakdown spectroscopy towards steel alloy in different gaseous media[J]. Materials Chemistry and Physics, 2024, 320: 129443. doi: 10.1016/j.matchemphys.2024.129443
    [34]
    PÉREZ-RODRÍGUEZ M, DIRCHWOLF P M, SILVA T V, et al. Fast spark discharge-laser-induced breakdown spectroscopy method for rice botanic origin determination[J]. Food chemistry, 2020, 33: 127051.
    [35]
    WU M F, WANG X, NIU G H, et al. Ultrasensitive and simultaneous detection of multielements in aqueous samples based on biomimetic array combined with laser-induced breakdown spectroscopy[J]. Analytical Chemistry, 2021, 93(29): 10196-10203. doi: 10.1021/acs.analchem.1c01484
  • Relative Articles

    [1]CAO Zong-xin, QIAN Yi-long, LIU Yu-tong, LI Kun, LI Zi-fan, GONG Jun-hao, HU Wu-sheng, ZHANG Da-wei, HONG Rui-jin, MAO Hong-min, LU Huan-jun, FAN Li-na, CAO Zhao-liang. Research on pointing accuracy of liquid crystal phase array based on the variable period grating method[J]. Chinese Optics, 2025, 18(1): 29-41. doi: 10.37188/CO.2024-0097
    [2]WANG Zi-hao, LIU Zhi-kai, FENG Yu-xiang, ZHANG Cheng-long, LV Li-dong. Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system[J]. Chinese Optics, 2025, 18(2): 287-296. doi: 10.37188/CO.2024-0122
    [3]WANG Zi-jing, LI Xiang-jun, YAN De-xian. Terahertz broadband absorption spectrum enhancement based on asymmetric dielectric meta-grating on a metal substrate[J]. Chinese Optics. doi: 10.37188/CO.2024-0197
    [4]垂直端面光波导形状缺陷的激光补偿[J]. Chinese Optics. doi: 10.37188/CO.2024-0220
    [5]CHEN Fei, WANG Shu-qing, CHENG Nian-kai, ZHANG Wan-fei, ZHANG Yan, LIANG Jia-hui, ZHANG Lei, WANG Gang, MA Xiao-fei, LIU Zhen-rong, LUO Xue-bin, YE Ze-fu, ZHU Zhu-jun, YIN Wang-bao, XIAO Lian-tuan, JIA Suo-tang. Study and analysis of self-absorption-free laser-induced breakdown spectroscopy with high-repetition rate acousto-optic gating[J]. Chinese Optics, 2024, 17(2): 253-262. doi: 10.37188/CO.2023-0147
    [6]WANG Zhen, LV Ri-yi, LI Chao, CHEN Jun-feng, ZHANG Man. Calculation and experiment of tiny perturbations in electric field measurement for the laser-induced fluorescence-dip spectroscopy method[J]. Chinese Optics, 2024, 17(6): 1351-1358. doi: 10.37188/CO.2024-0037
    [7]LIU Rui-bin, YIN Yun-song. Research progress on the related physical mechanism of laser-induced breakdown spectroscopy[J]. Chinese Optics, 2024, 17(1): 19-37. doi: 10.37188/CO.2023-0019
    [8]LIU Xiao-liang, WANG Lan, PENG Ling-ling, LI Xiao-yan, LIU Yun-hai, ZOU Chun-yan. Quantitative analysis of thorium in graphite using femtosecond laser-induced breakdown spectroscopy[J]. Chinese Optics, 2023, 16(1): 103-112. doi: 10.37188/CO.2022-0082
    [9]LIU Xiao-liang, SUN Shao-hua, MENG Xiang-ting, LI Xiao-yan, LIU Yun-hai. Measurement of Sm in rare earth mineral soil using laser-induced breakdown spectroscopy[J]. Chinese Optics, 2022, 15(4): 712-721. doi: 10.37188/CO.2022-0042
    [10]ZENG Qing-dong, YUAN Meng-tian, ZHU Zhi-heng, CHEN Guang-hui, WANG Jie, YU Hua-qing, GUO Lian-bo, LI Xiang-you. Research progress on portable laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(3): 470-486. doi: 10.37188/CO.2020-0093
    [11]YU Dan, SUN Yan, FENG Zhi-shu, DAI Yu-yin, CHEN An-min, JIN Ming-xing. Effects of the combination of sample temperature and spatial confinement on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2021, 14(2): 336-343. doi: 10.37188/CO.2020-0118
    [12]LI Chen-yu, QU Liang, GAO Fei, DUAN Hong-ying, GUAN Ming, LIU Han-wen, ZOU Fei-chi. Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy[J]. Chinese Optics, 2020, 13(6): 1239-1248. doi: 10.37188/CO.2020-0112
    [13]LI Ang-ze, WANG Xian-shuang, XU Xiang-jun, HE Ya-ge, GUO Shuai, LIU Yu-fei, GUO Wei, LIU Rui-bin. Fast classification of tobacco based on laser-induced breakdown spectroscopy[J]. Chinese Optics, 2019, 12(5): 1139-1146. doi: 10.3788/CO.20191205.1139
    [14]SONG Fang-xi, MENG Wei-dong, XIA Yan, CHEN Yan, PU Xiao-yun. Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens[J]. Chinese Optics, 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630
    [15]LI An, SHAO Qiu-feng, LIU Rui-bin. Review of new type portable laser-induced breakdown spectroscopy system[J]. Chinese Optics, 2017, 10(4): 426-437. doi: 10.3788/CO.20171004.0426
    [16]LI An, WANG Liang-wei, GUO Shuai, LIU Rui-bin. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Optics, 2017, 10(5): 619-640. doi: 10.3788/CO.20171005.0619
    [17]EMDE Benjamin, HERMSDORF Jörg, KAIERLE Stefan, OVERMEYER Ludger. Identification of the zinc dispersion in rubber blends by libs with a Nd: YAG laser[J]. Chinese Optics, 2015, 8(4): 596-602. doi: 10.3788/CO.20150804.0596
    [18]LI Xin-xi, WANG Yan, WANG Yun, HUANG Chao-qiang, ZHANG Ying. Design of compact neutron spin flipper based on cold neutron spectrum[J]. Chinese Optics, 2014, 7(4): 600-607. doi: 10.3788/CO.20140704.0600
    [19]HOU Guan-yu, WANG Ping, TONG Cun-zhu. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. doi: 10.3788/CO.20130604.0490
    [20]ZHANG Yan, ZHANG Xiao-hang, ZHANG Yu, CUI Cui-li, GUO Xiu-zhen, WU Jin-hui. Generation and modulation of high efficiency stationary optical signals in cold 87 Rb atomic samples[J]. Chinese Optics, 2012, 5(2): 143-147. doi: 10.3788/CO.20120502.0143
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.0 %FULLTEXT: 34.0 %META: 60.4 %META: 60.4 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.2 %其他: 10.2 %Wan Chai: 0.4 %Wan Chai: 0.4 %上海: 0.9 %上海: 0.9 %上饶: 3.0 %上饶: 3.0 %伊利诺伊州: 0.9 %伊利诺伊州: 0.9 %利雅德: 0.4 %利雅德: 0.4 %北京: 3.4 %北京: 3.4 %十堰: 0.4 %十堰: 0.4 %南昌: 7.7 %南昌: 7.7 %合肥: 0.9 %合肥: 0.9 %哥伦布: 0.9 %哥伦布: 0.9 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 1.7 %天津: 1.7 %太原: 1.3 %太原: 1.3 %宣城: 0.4 %宣城: 0.4 %密蘇里城: 0.4 %密蘇里城: 0.4 %平顶山: 0.4 %平顶山: 0.4 %广州: 1.7 %广州: 1.7 %张家口: 6.0 %张家口: 6.0 %成都: 0.9 %成都: 0.9 %扬州: 0.4 %扬州: 0.4 %普罗维登斯: 0.4 %普罗维登斯: 0.4 %杭州: 0.4 %杭州: 0.4 %桂林: 0.4 %桂林: 0.4 %武汉: 0.9 %武汉: 0.9 %淄博: 1.3 %淄博: 1.3 %深圳: 0.9 %深圳: 0.9 %漯河: 3.4 %漯河: 3.4 %盐城: 0.9 %盐城: 0.9 %石家庄: 2.1 %石家庄: 2.1 %芒廷维尤: 12.8 %芒廷维尤: 12.8 %芝加哥: 1.7 %芝加哥: 1.7 %西宁: 3.0 %西宁: 3.0 %西安: 0.4 %西安: 0.4 %诺沃克: 1.3 %诺沃克: 1.3 %郑州: 0.4 %郑州: 0.4 %长春: 27.2 %长春: 27.2 %其他Wan Chai上海上饶伊利诺伊州利雅德北京十堰南昌合肥哥伦布嘉兴天津太原宣城密蘇里城平顶山广州张家口成都扬州普罗维登斯杭州桂林武汉淄博深圳漯河盐城石家庄芒廷维尤芝加哥西宁西安诺沃克郑州长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(141) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return