Turn off MathJax
Article Contents
WANG Zi-hao, LIU Zhi-kai, FENG Yu-xiang, ZHANG Cheng-long, LV Li-dong. Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system[J]. Chinese Optics. doi: 10.37188/CO.2024-0122
Citation: WANG Zi-hao, LIU Zhi-kai, FENG Yu-xiang, ZHANG Cheng-long, LV Li-dong. Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system[J]. Chinese Optics. doi: 10.37188/CO.2024-0122

Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system

cstr: 32171.14.CO.2024-0122
Funds:  Supported by National Natural Science Foundation of China (No. 51977001)
  • Received Date: 02 Jul 2024
  • Accepted Date: 09 Oct 2024
  • Available Online: 28 Nov 2024
  • The sensitivity of phase-sensitive optical time-domain reflecting (Φ-OTDR) system is limited by the intrinsic system noise such as the phase noise of the laser, the spontaneous emission noise of the erbium-doped fiber amplifier, and the shot noise and thermal noise of the photodetector, as well as the random noise in the environment. Therefore, the noise reduction algorithms based on the optical time-domain reflecting data is investigated to improve the signal-to-noise ratio (SNR) of the system without degrading the frequency response range. And the Savitzky-Golay smoothing algorithm is proposed by selecting a slidable window with fixed-length to process OTDR data for the SNR improvement, while maintaining the system sampling frequency, and then, the experimental system is built to demonstrate the results. The experimental results show that by using the Savitzky-Golay smoothing algorithm, the SNR of the system is improved by 5.41dB relative to that by difference method with the original data, and the SNR is improved by 3.39dB and 5.05dB respectively, compared to the commonly used cumulative averaging method and sliding averaging method. It is demonstrated that the Savitzky-Golay smoothing algorithm can improve the sensitivity and accuracy of the Φ-OTDR system, which helps to accurately sense weak vibration events and reduce false alarm rate.

     

  • loading
  • [1]
    刘舒馨, 祝苒, 刘忠富. 分布式光纤传感器在地震监测中的应用综述[J]. 山西电子技术,2023(5):108-110. doi: 10.3969/j.issn.1674-4578.2023.05.036

    LIU SH X, ZHU R, LIU ZH F. Application of distributed fiber optic sensor in seismic monitoring[J]. Shanxi Electronic Technology, 2023(5): 108-110. (in Chinese). doi: 10.3969/j.issn.1674-4578.2023.05.036
    [2]
    ELSHERIF M, SALIH A E, MUÑOZ M G, et al. Optical fiber sensors: working principle, applications, and limitations[J]. Advanced Photonics Research, 2022, 3(11): 2100371. doi: 10.1002/adpr.202100371
    [3]
    DUAN R. Real-time hotspot tracing and model analysis of a distributed optical fiber sensor integrated power transformer[J]. IEEE Access, 2022, 10: 57242-57254. doi: 10.1109/ACCESS.2022.3177844
    [4]
    江虹, 曾庆龙, 李家成. 基于VMD与MFE的光纤周界安防入侵事件识别[J]. 激光与红外,2023,53(7):1073-1080. doi: 10.3969/j.issn.1001-5078.2023.07.014

    JIANG H, ZENG Q L, LI J CH. Intrusion event identification for fiber optic perimeter security based on VMD and MFE[J]. Laser & Infrared, 2023, 53(7): 1073-1080. (in Chinese). doi: 10.3969/j.issn.1001-5078.2023.07.014
    [5]
    CHAMOIN L, FARAHBAKHSH S, PONCELET M. An educational review on distributed optic fiber sensing based on Rayleigh backscattering for damage tracking and structural health monitoring[J]. Measurement Science and Technology, 2022, 33(12): 124008. doi: 10.1088/1361-6501/ac9152
    [6]
    ASHRY I, MAO Y, WANG B W, et al. A review of distributed fiber–optic sensing in the oil and gas industry[J]. Journal of Lightwave Technology, 2022, 40(5): 1407-1431. doi: 10.1109/JLT.2021.3135653
    [7]
    LIU SH Q, YU F H, HONG R, et al. Advances in phase-sensitive optical time-domain reflectometry[J]. Opto-Electronic Advances, 2022, 5(3): 200078. doi: 10.29026/oea.2022.200078
    [8]
    HEALEY P. Fading in heterodyne OTDR[J]. Electronics Letters, 1984, 20(1): 30-32. doi: 10.1049/el:19840022
    [9]
    SHATALIN S V, TRESCHIKOV V N, ROGERS A J. Interferometric optical time-domain reflectometry for distributed optical-fiber sensing[J]. Applied Optics, 1998, 37(24): 5600-5604. doi: 10.1364/AO.37.005600
    [10]
    LIAO Y H, LI K, GONG Y D. Research on the noise suppression by φ-OTDR[J]. Journal of Optics, 2024: 1-10. (查阅网上资料, 未找到对应的卷期页码信息, 请确认) .
    [11]
    SUN Y T, MA H ZH. Progress of Fiber Bragg Grating Sensors in state perception of electrical equipment[J]. Measurement, 2023, 222: 113691. doi: 10.1016/j.measurement.2023.113691
    [12]
    LU Y L, ZHU T, CHEN L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249.
    [13]
    PAN ZH Q, LIANG K ZH, ZHOU J, et al. Interference-fading-free phase-demodulated OTDR system[J]. Proceedings of SPIE, 2012, 8421: 842129. doi: 10.1117/12.975656
    [14]
    ZHU T, XIAO X H, HE Q, et al. Enhancement of SNR and spatial resolution in φ-OTDR system by using two-dimensional edge detection method[J]. Journal of Lightwave Technology, 2013, 31(17): 2851-2856. doi: 10.1109/JLT.2013.2273553
    [15]
    CHEN D, LIU Q W, HE Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR[J]. Optics Express, 2017, 25(7): 8315-8325. doi: 10.1364/OE.25.008315
    [16]
    CHEN D, LIU Q W, HE Z Y. High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution[J]. Optics Express, 2018, 26(13): 16138-16146. doi: 10.1364/OE.26.016138
    [17]
    CHEN W, MA X H, MA Q L, et al. Denoising method of the Φ-OTDR system based on EMD-PCC[J]. IEEE Sensors Journal, 2021, 21(10): 12113-12118. doi: 10.1109/JSEN.2020.3033674
    [18]
    杨文晨, 秦增光, 刘兆军, 等. 基于希尔伯特-黄变换的双马赫-曾德分布式光纤传感振动定位方法[J]. 中国光学,2021,14(6):1410-1416. doi: 10.37188/CO.2021-0065

    YANG W CH, QIN Z G, LIU ZH J, et al. A Hilbert-Huang transform method for vibration localization based on a dual Mach-Zehnder distributed optical fiber sensor[J]. Chinese Optics, 2021, 14(6): 1410-1416. (in Chinese). doi: 10.37188/CO.2021-0065
    [19]
    LI T X, ZHANG F D, LIN J, et al. Fading noise suppression method of Φ-OTDR system based on GA-VMD algorithm[J]. IEEE Sensors Journal, 2023, 23(19): 22608-22619. doi: 10.1109/JSEN.2023.3306199
    [20]
    MARIE T F B, BIN Y, DEZHI H, et al. Principle and application state of fully distributed fiber optic vibration detection technology based on Φ-OTDR: a review[J]. IEEE Sensors Journal, 2021, 21(15): 16428-16442. doi: 10.1109/JSEN.2021.3081459
    [21]
    BAI X Y, LIU H ZH, LIN J, et al. SNR enhancement method for Φ-OTDR system based on Sdr SampEn-BiPSO-SVD algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 9502212.
    [22]
    潘冬阳, 南钢洋, 白雪. 基于高速信号采集系统累加平均算法研究[J]. 仪表技术与传感器,2021(8):122-125. doi: 10.3969/j.issn.1002-1841.2021.08.026

    PAN D Y, NAN G Y, BAI X. Research on overlapping average algorithm based on high speed signal acquisition system[J]. Instrument Technique and Sensor, 2021(8): 122-125. (in Chinese). doi: 10.3969/j.issn.1002-1841.2021.08.026
    [23]
    NAKAJIMA I, MURAKI Y, ICHIMURA H, et al. Value and challenges of using the Savitzky-Golay method for ECG noise reduction[C]. Proceedings of 2022 International Conference on Electrical, Computer and Energy Technologies, IEEE, 2022: 1-5.
    [24]
    NIEDŹWIECKI M J, CIOŁEK M, GAŃCZA A, et al. Application of regularized Savitzky–Golay filters to identification of time-varying systems[J]. Automatica, 2021, 133: 109865. doi: 10.1016/j.automatica.2021.109865
    [25]
    JUAREZ J C, TAYLOR H F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system[J]. Optics Letters, 2005, 30(24): 3284-3286. doi: 10.1364/OL.30.003284
    [26]
    ZHOU ZH X, TIAN L, HAN Y SH, et al. Distributed vibration and temperature simultaneous sensing using one optical fiber[J]. Optics Communications, 2021, 487: 126801. doi: 10.1016/j.optcom.2021.126801
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(106) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return