Turn off MathJax
Article Contents
HUANG Peng, SONG Yue, ZHOU Fei-Qiang, ZHOU Yi-Hang, HE Guo-Qiang, XIE Zhong-Yi, ZHANG Xin-Long. Optimizing structural parameters of electrowetting triple-liquid lens based on joint simulation technology[J]. Chinese Optics. doi: 10.37188/CO.2024-0130
Citation: HUANG Peng, SONG Yue, ZHOU Fei-Qiang, ZHOU Yi-Hang, HE Guo-Qiang, XIE Zhong-Yi, ZHANG Xin-Long. Optimizing structural parameters of electrowetting triple-liquid lens based on joint simulation technology[J]. Chinese Optics. doi: 10.37188/CO.2024-0130

Optimizing structural parameters of electrowetting triple-liquid lens based on joint simulation technology

cstr: 32171.14.CO.2024-0130
Funds:  Supported by Guangxi Science and Technology Program (No. AB22035041); Wuzhou Central Leading Local Science and Technology Development Fund (No. 202201001); Guilin University of Technology Scientific Research Startup Fundation (No. GUTQDJJ2016014)
More Information
  • Corresponding author: hp1981hp@sina.com.cn
  • Received Date: 12 Jul 2024
  • Accepted Date: 24 Sep 2024
  • Available Online: 16 Oct 2024
  • The electrowetting triple-liquid lens has excellent zoom performance, but its structural complexity and design difficulty are relatively high. Therefore, we propose a method for optimizing the structural parameters of the electrowetting triple-liquid lens based on joint simulation. To design a triple-liquid lens, Comsol and Zemax software are used to establish triple-liquid lens simulation models under different structural parameters, and its focal lengths under different voltages are obtained. The effects of height and taper on zoom range and initial focal length are analyzed, and a set of structural parameters with the maximum zoom range and the longest initial focal length is determined. To verify the methods reliability, we prepare the triple-liquid lens models with different heights and tapers, and conduct zoom experiments. The simulation and experimental results show that the initial focal length of the triple-liquid lens correlates positively with height and taper; the zoom range correlates positively with taper, but height is the main influencing factor. When the height is 12 mm and the taper is 20°, the lens has the most extensive zoom range and the longest initial focal length. When the taper is less than 15°, the simulation and experimental results are highly consistent.

     

  • loading
  • [1]
    王潇枫, 石岩, 庄一, 等. 变焦结构光成像系统的光学设计[J]. 应用光学,2018,39(1):22-27.

    WANG X F, SHI Y, ZHUANG Y, et al. Optical design of zoom structured light imaging system[J]. Journal of Applied Optics, 2018, 39(1): 22-27. (in Chinese).
    [2]
    黄翔, 林四英, 谷丹丹, 等. 液体变焦镜头的研究进展[J]. 中国光学,2019,12(6):1179-1194. doi: 10.3788/co.20191206.1179

    HUANG X, LIN S Y, GU D D, et al. Review on progress of variable-focus liquid lens[J]. Chinese Optics, 2019, 12(6): 1179-1194. (in Chinese). doi: 10.3788/co.20191206.1179
    [3]
    王琼华, 李磊. 基于自适应透镜的光学成像系统[J]. 光电子技术,2020,40(3):155-163.

    WANG Q H, LI L. Optical imaging system based on adaptive lens[J]. Optoelectronic Technology, 2020, 40(3): 155-163. (in Chinese).
    [4]
    张鑫, 蒋世磊, 赵金, 等. 电润湿液体透镜变焦光学系统设计[J]. 光学与光电技术,2024,22(1):90-95. doi: 10.3969/j.issn.1672-3392.2024.1.gxygdjs202401012

    ZHANG X, JIANG SH L, ZHAO J, et al. Design of zoom optical system with electorwetting liquid lens[J]. Optics & Optoelectronic Technology, 2024, 22(1): 90-95. (in Chinese). doi: 10.3969/j.issn.1672-3392.2024.1.gxygdjs202401012
    [5]
    董健, 王春艳, 孙昊, 等. 腹腔镜用液体透镜变焦光学系统设计研究[J]. 中国激光,2023,50(21):2107204. doi: 10.3788/CJL231015

    DONG J, WANG CH Y, SUN H, et al. Design and study of liquid lens zoom optical system for laparoscopy[J]. Chinese Journal of Lasers, 2023, 50(21): 2107204. (in Chinese). doi: 10.3788/CJL231015
    [6]
    CHENG Y, CAO J, TANG X, et al. Optical zoom imaging systems using adaptive liquid lenses[J]. Bioinspiration & Biomimetics, 2021, 16(4): 041002.
    [7]
    XU J B, ZHAO Y R, LIU CH, et al. Triple-layer spherical electrowetting liquid lens with large-aperture and high zoom ratio[J]. Optics and Lasers in Engineering, 2023, 160: 107311. doi: 10.1016/j.optlaseng.2022.107311
    [8]
    赵瑞, 马建权, 党智勇, 等. 基于介电润湿三液体透镜的变焦光学系统的设计与分析[J]. 光子学报,2017,46(6):622005. doi: 10.3788/gzxb20174606.0622005

    ZHAO R, MA J Q, DANG ZH Y, et al. Design and analysis of an optical zoom system using electrowetting-based triple liquid lens[J]. Acta Photonica Sinica, 2017, 46(6): 622005. (in Chinese). doi: 10.3788/gzxb20174606.0622005
    [9]
    赵瑞, 陈露楠, 孔梅梅, 等. 用于波前补偿的三液体透镜阵列的设计分析[J]. 激光与光电子学进展,2020,57(21):212202.

    ZHAO R, CHEN L N, KONG M M, et al. Design and analysis of triple liquid lens array for wavefront compensation[J]. Laser & Optoelectronics Progress, 2020, 57(21): 212202. (in Chinese).
    [10]
    SONG X M, ZHANG H X, LI D Y, et al. Electrowetting lens with large aperture and focal length tunability[J]. Scientific Reports, 2020, 10(1): 16318. doi: 10.1038/s41598-020-73260-4
    [11]
    程阳, 曹杰, 王营博, 等. 介电弹性体驱动液体透镜的设计与分析[J]. 光学学报,2021,41(5):0522004. doi: 10.3788/AOS202141.0522004

    CHENG Y, CAO J, WANG Y B, et al. Design and analysis of liquid lens driven by dielectric elastomer[J]. Acta Optica Sinica, 2021, 41(5): 0522004. (in Chinese). doi: 10.3788/AOS202141.0522004
    [12]
    SONG X M, ZHANG H X, ZHANG Z L, et al. Design and characteristics of a Maxwell force-driven liquid lens[J]. Optics Express, 2021, 29(6): 8323-8332. doi: 10.1364/OE.418630
    [13]
    ZHAO P P, LI Y, ZAPPE H. Accelerated electrowetting-based tunable fluidic lenses[J]. Optics Express, 2021, 29(10): 15733-15746. doi: 10.1364/OE.423460
    [14]
    徐荣青, 孔梅梅, 张宏超, 等. 减少电润湿液体透镜变焦时间的实验研究[J]. 光学学报,2020,40(13):1322003. doi: 10.3788/AOS202040.1322003

    XU R Q, KONG M M, ZHANG H CH, et al. Experimental research on reducing zoom time of electrowetting liquid lenses[J]. Acta Optica Sinica, 2020, 40(13): 1322003. (in Chinese). doi: 10.3788/AOS202040.1322003
    [15]
    黄鹏, 杨晓营, 陈彬, 等. 电润湿透镜重复变焦精度指标及其优化方法[J]. 中国光学(中英文),2023,16(4):868-877. doi: 10.37188/CO.2022-0209

    HUANG P, YANG X Y, CHEN B, et al. Repeated zoom accuracy index of an electrowetting lens and its optimization method[J]. Chinese Optics, 2023, 16(4): 868-877. (in Chinese). doi: 10.37188/CO.2022-0209
    [16]
    LIM W Y, SUPEKAR O D, ZOHRABI M, et al. Liquid combination with high refractive index contrast and fast scanning speeds for electrowetting adaptive optics[J]. Langmuir, 2018, 34(48): 14511-14518. doi: 10.1021/acs.langmuir.8b02849
    [17]
    WANG D Y, HU D G, ZHOU Y W, et al. Design and fabrication of a focus-tunable liquid cylindrical lens based on electrowetting[J]. Optics Express, 2022, 30(26): 47430-47439. doi: 10.1364/OE.478130
    [18]
    孔梅梅, 潘世成, 袁东, 等. 方腔结构非球面液体透镜的设计与分析[J]. 激光与光电子学进展,2023,60(21):2122005.

    KONG M M, PAN SH CH, YUAN D, et al. Design and analysis of aspheric liquid lens with square cavity structure[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2122005. (in Chinese).
    [19]
    孔梅梅, 董媛, 徐春生, 等. 基于平板电极的非球面组合液体透镜的仿真与实验分析[J]. 光学学报,2024,44(8):0823002. doi: 10.3788/AOS231775

    KONG M M, DONG Y, XU CH SH, et al. Simulation and experimental analysis of aspherical combined liquid lens based on flat electrode[J]. Acta Optica Sinica, 2024, 44(8): 0823002. (in Chinese). doi: 10.3788/AOS231775
    [20]
    孔梅梅, 董媛, 徐春生, 等. 基于平行平板电极的非球面双液体透镜的仿真与实验分析[J]. 物理学报,2023,72(24):244203. doi: 10.7498/aps.72.20230994

    KONG M M, DONG Y, XU CH SH, et al. Simulation and experimental analysis of aspherical double-liquid lens based on parallel plate electrode[J]. Acta Physica Sinica, 2023, 72(24): 244203. (in Chinese). doi: 10.7498/aps.72.20230994
    [21]
    马小超. 自动焦度计使用注意事项及部分项目的自测方法[J]. 中国计量,2023(9):102-104,119.

    MA X CH. Precautions for using the automatic lensmeter and self-testing methods for some items[J]. China Metrology, 2023(9): 102-104,119. (in Chinese)
    [22]
    李中杨, 马国鹭, 曾国英. 液态金属汞在硅片表面的润湿行为研究[J]. 真空科学与技术学报,2018,38(9):817-820.

    LI ZH Y, MA G L, ZENG G Y. Study on wetting behavior of liquid mercury droplet on silicon wafer surface[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(9): 817-820. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article views(84) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return