Turn off MathJax
Article Contents
WANG Hua-xin, WANG Tong, XIONG Han. Measurement of orbital angular momentum of vortex beam by topological charge difference method[J]. Chinese Optics. doi: 10.37188/CO.2024-0141
Citation: WANG Hua-xin, WANG Tong, XIONG Han. Measurement of orbital angular momentum of vortex beam by topological charge difference method[J]. Chinese Optics. doi: 10.37188/CO.2024-0141

Measurement of orbital angular momentum of vortex beam by topological charge difference method

cstr: 32171.14.CO.2024-0141
Funds:  Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135)
More Information
  • Corresponding author: xh1980xh@126.com
  • Received Date: 09 Aug 2024
  • Accepted Date: 18 Oct 2024
  • Available Online: 27 Nov 2024
  • This paper presents a topological load difference detection technique for the orbital angular momentum of vortex beams. Two vortex beams with different topological charges obtained the periodic intensity distribution. The orbital angular momentum of the vortex beam to be measured can be quickly and accurately calculated by reading the number of spots in one period. The traditional interference and diffraction methods need to receive the complete vortex beam. In contrast, the topological charge difference method only needs to receive a small amount of vortex beam to measure. This has great advantages in the measurement of high-order and large-scale vortex beams. It has potential applications in long-distance free-space optical communication of vortex beams.

     

  • loading
  • [1]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [2]
    CHEN H, ZHANG P, HE SH, et al. Average capacity of an underwater wireless communication link with the quasi-Airy hypergeometric-Gaussian vortex beam based on a modified channel model[J]. Optics Express, 2023, 31(15): 24067-24084. doi: 10.1364/OE.492405
    [3]
    BISMI B S, AZEEM S. Design and analysis of DPSK, QPSK modulations in underwater optical communication using free space optics[J]. Wireless Personal Communications, 2023, 132(2): 1487-1502. doi: 10.1007/s11277-023-10671-2
    [4]
    WANG X W, NIE ZH Q, LIANG Y, et al. Recent advances on optical vortex generation[J]. Nanophotonics, 2018, 7(9): 1533-1556. doi: 10.1515/nanoph-2018-0072
    [5]
    KAUR S, SACHDEVA S, SINDHWANI M. 400 Gb/s free space optical communication (FSOC) system using OAM multiplexing and PDM-QPSK with DSP[J]. Journal of Optical Communications, 2024, 45(4): 917-923. doi: 10.1515/joc-2022-0111
    [6]
    VASAVA P B, LAPSIWALA P B. Investigation of link due to atmospheric turbulence in free space optical communication for optical wireless terrestrial networks[J]. Journal of Optical Communications, 2024, 45(4): 795-808. doi: 10.1515/joc-2021-0230
    [7]
    SAVIDHAN S C S, NAIK R P, ACHARYA U S. Performance analysis of underwater vertical wireless optical communication links using selection combining[J]. Applied Optics, 2023, 62(31): 8229-8234. (查阅网上资料, 标黄信息不确定, 请确认) .
    [8]
    SINGH M, LAL SINGH M, SINGH R, et al. Comprehensive experimental and statistical analysis of the effects of salinity gradient, temperature gradient, air bubbles on the performance of underwater wireless optical communication link[J]. Journal of Modern Optics, 2022, 69(17): 978-994. doi: 10.1080/09500340.2022.2107247
    [9]
    KHONINA S N, USTINOV A V. Binary multi-order diffraction optical elements with variable fill factor for the formation and detection of optical vortices of arbitrary order[J]. Applied Optics, 2019, 58(30): 8227-8236. doi: 10.1364/AO.58.008227
    [10]
    SAVELYEV D, DEGTYAREV S. Features of the optical vortices diffraction on silicon ring gratings[J]. Optical Memory and Neural Networks, 2022, 31(S1): 55-66. doi: 10.3103/S1060992X22050095
    [11]
    VLASOV S N, KOPOSOVA E V. Diffraction of wave beams from a reflective grating[J]. Radiophysics and Quantum Electronics, 2023, 66(5-6): 345-356. doi: 10.1007/s11141-024-10300-3
    [12]
    庄京秋, 熊晗, 虞天成, 等. 基于软边小孔的涡旋光轨道角动量检测研究[J]. 光学 精密工程,2022,30(12):1394-1405. doi: 10.37188/OPE.20223012.1394

    ZHUNG J Q, XIONG H, YU T CH, et al. Research on Angular momentum detection of Vortex optical orbit based on Small holes with soft edges[J]. Optics and Precision Engineering, 2022, 30(12): 1394-1405. (in Chinese). doi: 10.37188/OPE.20223012.1394
    [13]
    黎芳, 李润豪, 杨傲, 等. 利用涡旋光轨道角动量的8进制数据传输[J]. 激光与红外,2024,54(6):885-890.

    LI F, LI R H, YANG A, et al. Octal data transmission utilizing orbital angular momentum of the vortex light[J]. Laser & Infrared, 2024, 54(6): 885-890. (in Chinese).
    [14]
    袁小聪, 贾平, 雷霆, 等. 光学旋涡与轨道角动量光通信[J]. 深圳大学学报(理工版),2014,31(4):331-346. doi: 10.3724/SP.J.1249.2014.04331

    YUAN X C, JIA P, LEI T, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University (Science and Engineering), 2014, 31(4): 331-346. (in Chinese). doi: 10.3724/SP.J.1249.2014.04331
    [15]
    南久航, 韩一平. 双路多进制涡旋光通信[J]. 光学学报,2021,41(12):1206001.

    NAN J H, HAN Y P. Dual-channel multiband vortex optical communication[J]. Acta Optica Sinica, 2021, 41(12): 1206001. (in Chinese).
    [16]
    陆健能. 涡旋光束的轨道角动量测量方法研究[D]. 南京: 南京师范大学, 2020.

    LU J N. Research on orbital angular momentum measurement method of vortex beam[D]. Nanjing: Nanjing Normal University, 2020. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认) .
    [17]
    邹文康, 杨春勇, 侯金, 等. 环形渐变型光栅用于涡旋光束拓扑荷数测量的研究[J]. 激光与光电子学进展,2019,56(14):140501.

    ZOU W K, YANG CH Y, HOU J, et al. Measurement of topological charges for vortex beams using gradually-changing-period annular gratings[J]. Laser & Optoelectronics Progress, 2019, 56(14): 140501. (in Chinese).
    [18]
    侯政诚, 张明明, 白胜闯, 等. 一维阵列涡旋光束在海面大气中的传输特性[J]. 中国光学(中英文),2024,17(2):300-311. doi: 10.37188/CO.2023-0094

    HOU ZH CH, ZHANG M M, BAI SH CH, et al. Propagation properties of one-dimensional array vortex beams in a marine atmosphere[J]. Chinese Optics, 2024, 17(2): 300-311. (in Chinese). doi: 10.37188/CO.2023-0094
    [19]
    杨嶒浩, 程科, 黄宏伟, 等. 杂化偏振涡旋合成光束阵列的轨道角动量谱(英文)[J]. 中国光学(中英文),2023,16(6):1501-1511. doi: 10.37188/CO.EN-2023-0010

    YANG C H, CHENG K, HUANG H W, et al. Orbital-angular-momentum spectra in coherent optical vortex beam arrays with hybrid states of polarization[J]. Chinese Optics, 2023, 16(6): 1501-1511. doi: 10.37188/CO.EN-2023-0010
    [20]
    YAN W X, CHEN ZH ZH, LONG X, et al. Iso-propagation vortices with OAM-independent size and divergence toward future faster optical communications[J]. Advanced Photonics, 2024, 6(3): 049801.
    [21]
    刘慎哲, 宋镇江, 黄秀军, 等. 离轴高阶贝塞尔-高斯涡旋光束的传输分析[J]. 大气与环境光学学报,2019,14(6):401-410.

    LIU SH ZH, SONG ZH J, HUANG X J, et al. Transmission analysis of off-axis high order Bessel-Gaussian vortex beam[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 401-410. (in Chinese).
    [22]
    VAITY P, BANERJI J, SINGH R P. Measuring the topological charge of an optical vortex by using a tilted convex lens[J]. Physics Letters A, 2013, 377(15): 1154-1156. doi: 10.1016/j.physleta.2013.02.030
    [23]
    夏豪杰, 谷容睿, 潘成亮, 等. 涡旋光位移干涉测量方法与信号处理[J]. 光学 精密工程,2020,28(9):1905-1912. doi: 10.37188/OPE.20202809.1905

    XIA H J, GU R R, PAN CH L, et al. Signal processing method for displacement measurement interferometry using vortex beams[J]. Optics and Precision Engineering, 2020, 28(9): 1905-1912. (in Chinese). doi: 10.37188/OPE.20202809.1905
    [24]
    杨启航, 李盼, 杨焓, 等. 空间光调制器模拟光栅产生高阶和分数阶涡旋光束[J]. 光学 精密工程,2023,31(19):2809-2817. doi: 10.37188/OPE.20233119.2809

    YANG Q H, LI P, YANG H, et al. Generation of high-order and fractional vortex beams using gratings simulated by spatial light modulators[J]. Optics and Precision Engineering, 2023, 31(19): 2809-2817. (in Chinese). doi: 10.37188/OPE.20233119.2809
    [25]
    NIV A, BIENER G, KLEINER V, et al. Manipulation of the Pancharatnam phase in vectorial vortices[J]. Optics Express, 2006, 14(10): 4208-4220. doi: 10.1364/OE.14.004208
    [26]
    LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145): 537-540. doi: 10.1126/science.1239936
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(107) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return