Volume 18 Issue 2
Mar.  2025
Turn off MathJax
Article Contents
WU Yin, WANG Yue-ming, ZHANG Dong. Design of spaceborne full-spectrum hyperspectral system[J]. Chinese Optics, 2025, 18(2): 368-375. doi: 10.37188/CO.2024-0150
Citation: WU Yin, WANG Yue-ming, ZHANG Dong. Design of spaceborne full-spectrum hyperspectral system[J]. Chinese Optics, 2025, 18(2): 368-375. doi: 10.37188/CO.2024-0150

Design of spaceborne full-spectrum hyperspectral system

cstr: 32171.14.CO.2024-0150
Funds:  Supported by Key Civil Space Pre-Research Project (No. D040102)
More Information
  • Corresponding author: wangym@mail.sitp.ac.cn
  • Received Date: 25 Aug 2024
  • Rev Recd Date: 18 Sep 2024
  • Accepted Date: 07 Nov 2024
  • Available Online: 27 Nov 2024
  • Due to spacecraft’s volume and weight constraints, it is challenging to simultaneously obtain large aperture, high resolution, and hyperspectral information in spaceborne remote sensing systems. We propose a novel hyperspectral imaging system that utilizes a shared primary and secondary mirror design and a coaxial five-mirror optical path for multi-channel separation. By integrating Offner convex grating spectroscopy, the system enables hyperspectral detection from the visible to the long-wave infrared spectrum. Design results indicate that with a primary mirror diameter of 1000 mm at an altitude of 500 km, the spatial resolution in the visible and short-wave bands exceeds 2 m, in the mid-wave band exceeds 3 m, in the long-wave band exceeds 6 m, and the panchromatic resolution is better than 1 m. The system achieves a full field of view of 2.3°, accommodating a swath width of 20 km for detection. To enhance the system's aberration and distortion correction capabilities, high-order aspheric elements are incorporated to create a telecentric optical path, ensuring optimal matching between the telescope and the spectrometer. Furthermore, we propose housing the spectrometer module in a cooling chamber to effectively mitigate the impact of background radiation from the optical structure on image quality. The final design demonstrates excellent imaging quality, a simple layout, and a compact structure, enabling the simultaneous acquisition of high spectral information across the entire spectrum. This system has broad applications in satellite-based earth observation and imaging.

     

  • loading
  • [1]
    LULLA K, NELLIS M D, RUNDQUIST B, et al. Mission to earth: LANDSAT 9 will continue to view the world[J]. Geocarto International, 2021, 36(20): 2261-2263. doi: 10.1080/10106049.2021.1991634
    [2]
    WAHBALLAH W A, EL-TOHAMY F, BAZAN T M. A survey and trade-off-study for optical remote sensing satellite camera design[C]. 2020 12th International Conference on Electrical Engineering, IEEE, 2020: 298-305, doi: 10.1109/ICEENG45378.2020.9171752.
    [3]
    MÜCKE M, SANG B, HEIDER B, et al. EnMAP: hyperspectral imager (HSI) for Earth observation: current status[J]. Proceedings of SPIE, 2019, 11180: 1118067.
    [4]
    POLZ L, SERDYUCHENKO A, LETTNER M, et al. Setups for alignment and on-ground calibration and characterization of the EnMAP hyperspectral imager[J]. Proceedings of SPIE, 2021, 11852: 118526B.
    [5]
    LOIZZO R, GUARINI R, LONGO F, et al. Prisma: the Italian hyperspectral mission[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2018: 175-178, doi: 10.1109/IGARSS.2018.8518512.
    [6]
    TANII J, IWASAKI A, KAWASHIMA T, et al. Results of evaluation model of Hyperspectral Imager Suite (HISUI)[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2012: 131-134.
    [7]
    秦凯玲, 程宇峰, 王密, 等. 高分五号卫星全谱段光谱成像仪在轨几何定标方法及精度验证[J]. 上海航天,2019,36(S):210-218. doi: 10.19328/j.cnki.1006-1630.2019.S.032

    QIN K L, CHENG Y F, WANG M, et al. Geometric calibration and precision verification for GF-5 satellite VIMS camera[J]. Aerospace Shanghai, 2019, 36(S): 210-218. doi: 10.19328/j.cnki.1006-1630.2019.S.032
    [8]
    赵艳华, 戴立群, 白绍竣, 等. 全谱段光谱成像仪系统设计及实现[J]. 航天返回与遥感,2018,39(3):38-50.

    ZHAO Y H, DAI L Q, BAI SH J, et al. Design and implementation of full-spectrum spectral imager system[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 38-50. (in Chinese).
    [9]
    夏天, 严薇, 赵英芬, 等. 资源一号02D卫星数据应用[J]. 卫星应用,2021(11):54-60.

    XIA T, YAN W, ZHAO Y F, et al. Application of ZY-1 02D satellite data[J]. Satellite Applications, 2021(11): 54-60. (in Chinese).
    [10]
    陈飚. 资源一号02E星[J]. 卫星应用,2022(2):70.

    CHEN B. ZY-1 02E satellite[J]. Satellite Applications, 2022(2): 70. (in Chinese).
    [11]
    李先怡, 范海生, 潘申林, 等. 珠海一号高光谱卫星数据及应用概况[J]. 卫星应用,2019(8):12-18. doi: 10.3969/j.issn.1674-9030.2019.08.005

    LI X Y, FAN H S, PAN S L, et al. Data and application of Zhuhai-1 hyperspectral satellite[J]. Satellite Application, 2019(8): 12-18. doi: 10.3969/j.issn.1674-9030.2019.08.005
    [12]
    刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报,2020,24(4):333-344.

    LIU Y N, SUN D X, HU X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing (Chinese), 2020, 24(4): 333-344. (in Chinese).
    [13]
    胡枫, 丁纬, 阳结根, 等. 超短焦水下广角监控镜头的设计与分析[J]. 激光与光电子学进展,2023,60(21):2122002.

    HU F, DING W, YANG J G, et al. Design and analysis of ultra-short focal underwater wide angle monitoring lens[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2122002. (in Chinese).
    [14]
    姜海勇, 王义坤, 韩贵丞, 等. 中波红外相机光机结构背景辐射影响研究[J]. 激光与红外,2016,46(9):1102-1105. doi: 10.3969/j.issn.1001-5078.2016.09.015

    JIANG H Y, WANG Y K, HAN G CH, et al. Influence of optical-mechanical structure background radiation in MWIR camera[J]. Laser & Infrared, 2016, 46(9): 1102-1105. (in Chinese). doi: 10.3969/j.issn.1001-5078.2016.09.015
    [15]
    马健, 张军强, 吴从均, 等. 全谱段高光谱成像仪光学系统设计[J]. 光学学报,2022,42(23):2322001. doi: 10.3788/AOS202242.2322001

    MA J, ZHANG J Q, WU C J, et al. Optical system design of full-spectrum hyperspectral imaging spectrometer[J]. Acta Optica Sinica, 2022, 42(23): 2322001. (in Chinese). doi: 10.3788/AOS202242.2322001
    [16]
    贾文波, 秦天翔, 黄蕴涵, 等. 红外双波段成像光谱仪光学系统的设计与分析[J]. 中国激光,2021,48(23):2311002. doi: 10.3788/CJL202148.2311002

    JIA W B, QIN T X, HUANG Y H, et al. Design and analysis of optical system of an infrared dual-band imaging spectrometer[J]. Chinese Journal of Lasers, 2021, 48(23): 2311002. (in Chinese). doi: 10.3788/CJL202148.2311002
    [17]
    刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程,2012,20(1):52-57. doi: 10.3788/OPE.20122001.0052

    LIU Y J, CUI J CH, BAYANHESHIG, et al. Design and application of imaging spectrometer with convex grating[J]. Optics and Precision Engineering, 2012, 20(1): 52-57. (in Chinese). doi: 10.3788/OPE.20122001.0052
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views(182) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return