Turn off MathJax
Article Contents
JI Yi-xin, ZHANG Long-xiang, WU Wei, WANG Jian-hua. Optimal fringe frequency allocation for non-standard phase-shifting profilometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0163
Citation: JI Yi-xin, ZHANG Long-xiang, WU Wei, WANG Jian-hua. Optimal fringe frequency allocation for non-standard phase-shifting profilometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0163

Optimal fringe frequency allocation for non-standard phase-shifting profilometry

cstr: 32171.14.CO.2024-0163
Funds:  Supported by the Natural Science Foundation of Shandong Province (No. ZR2021MF024)
More Information
  • Corresponding author: E-mail: wangjianhua@qut.edu.cn
  • Received Date: 19 Sep 2024
  • Accepted Date: 07 Nov 2024
  • Available Online: 27 Nov 2024
  • In phase-shifting profilometry, the non-standard phase-shifting profilometry combined with the temporal phase unwrapping algorithm requires fewer fringe patterns, thereby achieving higher measurement efficiency. Given that fringe frequency has a significant effect on measurement accuracy, this paper analyzes phase errors in the temporal phase unwrapping of the non-standard phase-shifting profilometry and further evaluates its reliability. It is found that the reliability of phase unwrapping is closely related to the allocation of fringe frequencies. Consequently, an optimal fringe frequency allocation strategy is proposed. Based on this strategy, this paper conducts comparative experiments on different frequency combinations of non-standard phase-shifting profilometry, and the experimental results show that compared with the non-optimal frequency combinations of the 3fh1+2fh2+2fh3 heterodyne algorithm, the average error rate of the frequency combination proposed in this paper is reduced by 62.96%; compared with the non-optimal frequency combinations of the 2fh+2fm+3fl hierarchical algorithm, the average error rate of the frequency combination proposed in this paper is reduced by 49.23%.

     

  • loading
  • [1]
    吴荣, 赵世丽, 赵洋, 等. 条纹投影用于不同景深物体的三维测量[J]. 红外与激光工程,2022,51(11):20220088. doi: 10.3788/IRLA20220088

    WU R, ZHAO SH L, ZHAO Y, et al. Fringe projection profilometry for 3D measurement of objects with different depth of fields[J]. Infrared and Laser Engineering, 2022, 51(11): 20220088. (in Chinese). doi: 10.3788/IRLA20220088
    [2]
    ZUO CH, FENG SH J, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [3]
    FENG SH J, ZUO CH, ZHANG L, et al. Calibration of fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2021, 143: 106622. doi: 10.1016/j.optlaseng.2021.106622
    [4]
    王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese). doi: 10.37188/CO.2020-0199
    [5]
    GU Z M, FU J ZH, LIN H, et al. Development of 3D bioprinting: from printing methods to biomedical applications[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(5): 529-557. doi: 10.1016/j.ajps.2019.11.003
    [6]
    HU Y, CHEN Q, FENG SH J, et al. Microscopic fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2020, 135: 106192. doi: 10.1016/j.optlaseng.2020.106192
    [7]
    GENG J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 2011, 3(2): 128-160. doi: 10.1364/AOP.3.000128
    [8]
    VAN DER JEUGHT S, DIRCKX J J J. Real-time structured light profilometry: a review[J]. Optics and Lasers in Engineering, 2016, 87: 18-31. doi: 10.1016/j.optlaseng.2016.01.011
    [9]
    王霖, 韩旭, 伏燕军, 等. 用于三维测量的快速相位解包裹算法[J]. 应用光学,2019,40(2):271-277.

    WANG L, HAN X, FU Y J, et al. Fast phase unwrapping algorithm for 3D measurement[J]. Journal of Applied Optics, 2019, 40(2): 271-277. (in Chinese).
    [10]
    WANG L, YI L N, ZHANG Y T, et al. 3D reconstruction method based on N-step phase unwrapping[J]. The Visual Computer, 2024, 40(5): 3601-3613. doi: 10.1007/s00371-023-03054-y
    [11]
    SU X Y, CHEN W J. Reliability-guided phase unwrapping algorithm: a review[J]. Optics and Lasers in Engineering, 2004, 42(3): 245-261. doi: 10.1016/j.optlaseng.2003.11.002
    [12]
    杨泽霖, 张启灿, 衷涵. 利用双频外差和时空相位展开实现三维测量[J]. 光学与光电技术,2023,21(1):46-56.

    YANG Z L, ZHANG Q C, ZHONG H. Three dimensional shape measurement using dual-frequency heterodyne and spatial-temporal Phase Unwrapping[J]. Optics & Optoelectronic Technology, 2023, 21(1): 46-56. (in Chinese).
    [13]
    ZUO CH, HUANG L, ZHANG M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103. doi: 10.1016/j.optlaseng.2016.04.022
    [14]
    ZHANG S. Absolute phase retrieval methods for digital fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 107: 28-37. doi: 10.1016/j.optlaseng.2018.03.003
    [15]
    WU H T, CAO Y P, AN H H, et al. A novel phase-shifting profilometry to realize temporal phase unwrapping simultaneously with the least fringe patterns[J]. Optics and Lasers in Engineering, 2022, 153: 107004. doi: 10.1016/j.optlaseng.2022.107004
    [16]
    张昂, 孙亚琴, 高楠, 等. 三灰度编码相位展开方法条纹投影轮廓术[J]. 光学 精密工程,2022,30(5):518-526. doi: 10.37188/OPE.20223005.0518

    ZHANG A, SUN Y Q, GAO N, et al. Fringe projection profilometry by ternary-gray encoded phase unwrapping method[J]. Optics and Precision Engineering, 2022, 30(5): 518-526. (in Chinese). doi: 10.37188/OPE.20223005.0518
    [17]
    OCHOA N A. Fringe analysis with a two-step phase shifting method based on local Lissajous ellipse fitting[J]. Optics Communications, 2021, 483: 126647. doi: 10.1016/j.optcom.2020.126647
    [18]
    李乐阳, 吴周杰, 张启灿. 基于相移条纹分析的相位误差补偿技术发展综述(特邀)[J]. 激光与光电子学进展,2024,61(2):0211008.

    LI Y Y, WU ZH J, ZHANG Q C. Phase error compensation technique based on phase-shifting fringe analysis: a review (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211008. (in Chinese).
    [19]
    王一, 王祎泽, 邾继贵. 光学相控器件调制误差对干涉投影条纹的影响[J]. 激光与红外,2016,46(7):852-856.

    WANG Y, WANG Y Z, ZHU J G. Influence of modulation error of optical phase control device on interference projection fringe[J]. Laser & Infrared, 2016, 46(7): 852-856. (in Chinese).
    [20]
    LI J L, HASSEBROOK L G, GUAN CH. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity[J]. Journal of the Optical Society of America A, 2003, 20(1): 106-115. doi: 10.1364/JOSAA.20.000106
    [21]
    刘路, 潘艳娟, 奚冬冬, 等. 相位编码条纹投影轮廓术的相位展开误差校正方法[J]. 应用光学,2020,41(5):978-983. doi: 10.5768/JAO202041.0502007

    LIU L, PAN Y J, XI D D, et al. Phase unwrapping errors correction for phase-encoding based on fringe projection profilometry[J]. Journal of Applied Optics, 2020, 41(5): 978-983. (in Chinese). doi: 10.5768/JAO202041.0502007
    [22]
    侯艳丽, 梁瀚钢, 李付谦, 等. 相位测量轮廓术中时空结合的三频相位展开[J]. 光学学报,2022,42(1):0112006. doi: 10.3788/AOS202242.0112006

    HOU Y L, LIANG H G, LI F Q, et al. Spatial-temporal combined phase unwrapping in phase measurement profilometry[J]. Acta Optica Sinica, 2022, 42(1): 0112006. (in Chinese). doi: 10.3788/AOS202242.0112006
    [23]
    CAI Z W, LIU X L, JIANG H, et al. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 2015, 23(19): 25171-25181. doi: 10.1364/OE.23.025171
    [24]
    WANG J, WU ZH X, HUANG Y Y, et al. A rapid and accurate gamma compensation method based on double response curve fitting for high-quality fringe pattern generation[J]. Optics & Laser Technology, 2023, 160: 109084.
    [25]
    BING P, QIAN K M, LEI H, et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 2009, 34(4): 416-418. doi: 10.1364/OL.34.000416
    [26]
    LIU K, WANG Y CH, LAU D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. Journal of the Optical Society of America A, 2010, 27(3): 553-562. doi: 10.1364/JOSAA.27.000553
    [27]
    ZHANG X, ZHU L M, LI Y F, et al. Generic nonsinusoidal fringe model and gamma calibration in phase measuring profilometry[J]. Journal of the Optical Society of America A, 2012, 29(6): 1047-1058. doi: 10.1364/JOSAA.29.001047
    [28]
    ZUO CH, CHEN Q, GU G H, et al. Optimized three-step phase-shifting profilometry using the third harmonic injection[J]. Optica Applicata, 2013, 43(2): 393-408.
    [29]
    PETKOVIĆ T, PRIBANIĆ T, ZORAJA D. Selection of optimal frequencies in multiple-frequency fringe projection profilometry[J]. Optics and Lasers in Engineering, 2023, 163: 107455. doi: 10.1016/j.optlaseng.2022.107455
    [30]
    ZHU J P, FENG X Y, ZHU CH H, et al. Optimal frequency selection for accuracy improvement in binary defocusing fringe projection profilometry[J]. Applied Optics, 2022, 61(23): 6897-6904. doi: 10.1364/AO.464506
    [31]
    ZHANG M L, CHEN Q, TAO T Y, et al. Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection[J]. Optics Express, 2017, 25(17): 20381-20400. doi: 10.1364/OE.25.020381
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views(42) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return