Turn off MathJax
Article Contents
LI Mao-yue, XU Jing-zhi, LIU Ze-long, HUANG Si-qi. Nonlinear error active coding optimal estimation correction method for fringe projection[J]. Chinese Optics. doi: 10.37188/CO.2024-0167
Citation: LI Mao-yue, XU Jing-zhi, LIU Ze-long, HUANG Si-qi. Nonlinear error active coding optimal estimation correction method for fringe projection[J]. Chinese Optics. doi: 10.37188/CO.2024-0167

Nonlinear error active coding optimal estimation correction method for fringe projection

cstr: 32171.14.CO.2024-0167
Funds:  Supported by Natural Science Foundation of Heilongjiang Province of China (No. LH2022E085); National Natural Science Foundation of China (No. 51975169)
More Information
  • Stripe projection technology is widely used in 3D measurement and surface morphology reconstruction, where phase quality is a critical determinant of measurement accuracy. However, the nonlinear relationship between input and output light intensity is a major source of phase error. To address this issue, this paper introduces a novel system nonlinear active correction method. This method captures the variation pattern between input and output light intensity by projecting a small number of uniform gray-scale images onto a standard plane. This pattern is then integrated with active system nonlinear correction to construct a system nonlinear model based on the input-output light intensity variation. Genetic algorithms are used to optimize the coding values, which are then used to actively correct the projected fringes via fringe coding. The corrected fringes effectively reduce the influence of nonlinear effects, thereby significantly improving the quality of phase acquisition. To validate the proposed method, computer simulations were performed using three-step phase shifting. The results showed an 88% reduction in the standard error and an 85.5% reduction in the maximum error. In actual standard plane experiments, the corrected standard phase error decreased from 0.0706 rad to 0.0168 rad, and the maximum phase error decreased from 0.4129 rad to 0.0960 rad. In the face plaster model experiments, the corrected standard phase error decreased from 0.0472 rad to 0.0102 rad, and the maximum phase error decreased from 0.2990 rad to 0.2408 rad. In 3D reconstruction of complex morphology plaster models of human faces, the surface quality was significantly improved, and the water ripple effect, which affects the phase quality, was significantly reduced. Compared with existing large-step phase-shifting methods, the proposed method not only achieves high-quality phase acquisition accuracy, but also offers clear advantages in terms of required data volume and operational convenience, demonstrating broad application potential.

     

  • loading
  • [1]
    刘泽隆, 李茂月, 卢新元, 等. 高动态范围条纹结构光在机检测技术及应用进展[J]. 中国光学(中英文),2024,17(1):1-18. doi: 10.37188/CO.2023-0068

    LIU Z L, LI M Y, LU X Y, et al. On-machine detection technology and application progress of high dynamic range fringe structured light[J]. Chinese Optics, 2024, 17(1): 1-18. (in Chinese). doi: 10.37188/CO.2023-0068
    [2]
    吕虹毓, 李茂月, 蔡东辰, 等. 光栅投影在机三维形貌检测技术研究进展[J]. 中国光学(中英文),2023,16(3):500-513. doi: 10.37188/CO.2022-0083

    LV H Y, LI M Y, CAI D CH, et al. Research progress of grating projection on machine 3D topography inspection technology[J]. Chinese Optics, 2023, 16(3): 500-513. (in Chinese). doi: 10.37188/CO.2022-0083
    [3]
    张宗华, 李雁玲, 高峰, 等. 面向结构光三维测量的相位展开技术综述(特邀)[J]. 红外与激光工程,2023,52(8):20230126. doi: 10.3788/IRLA20230126

    ZHANG Z H, LI Y L, GAO F, et al. Phase unwrapping technology for structured light three-dimensional measurement: a review (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230126. (in Chinese). doi: 10.3788/IRLA20230126
    [4]
    王鹏, 刘佳琪, 孙长库, 等. 正交条纹级次分区域预编码校正Gamma非线性方法[J]. 红外与激光工程,2022,51(6):20210503. doi: 10.3788/IRLA20210503

    WANG P, LIU J Q, SUN CH K, et al. Correction of Gamma nonlinearity method by orthogonal fringe order subregional precoding[J]. Infrared and Laser Engineering, 2022, 51(6): 20210503. (in Chinese). doi: 10.3788/IRLA20210503
    [5]
    HOANG T, PAN B, NGUYEN D, et al. Generic gamma correction for accuracy enhancement in fringe-projection profilometry[J]. Optics Letters, 2010, 35(12): 1992-1994. doi: 10.1364/OL.35.001992
    [6]
    ZHANG S. Comparative study on passive and active projector nonlinear gamma calibration[J]. Applied Optics, 2015, 54(13): 3834-3841. doi: 10.1364/AO.54.003834
    [7]
    ZHU ZH M, XU X K, LONG W Q, et al. The optimal algorithm for eliminating nonlinear error in phase measurement profilometry based on global statistical phase feature function[J]. Measurement Science and Technology, 2024, 35(6): 065020. doi: 10.1088/1361-6501/ad34ee
    [8]
    王子龙, 徐洪志, 杨玲玲, 等. 基于1/6周期查找表的相移条纹非线性误差补偿法[J]. 光学学报,2024,44(9):0912002. doi: 10.3788/AOS231999

    WANG Z L, XU H ZH, YANG L L, et al. Nonlinear error compensation method for phase-shifted fringe using 1/6-period lookup table[J]. Acta Optica Sinica, 2024, 44(9): 0912002. (in Chinese). doi: 10.3788/AOS231999
    [9]
    XIONG CH, YAO J, CHEN J B, et al. A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection[J]. Theoretical and Applied Mechanics Letters, 2016, 6(1): 49-53. doi: 10.1016/j.taml.2015.12.005
    [10]
    李茂月, 蔡东辰, 赵伟翔, 等. 航空叶片形貌高精度结构光扫描视点规划[J]. 中国光学(中英文),2023,16(4):802-815. doi: 10.37188/CO.2022-0221

    LI M Y, CAI D CH, ZHAO W X, et al. High precision structural light scanning viewpoint planning for aircraft blade morphology[J]. Chinese Optics, 2023, 16(4): 802-815. (in Chinese). doi: 10.37188/CO.2022-0221
    [11]
    KATOCH S, CHAUHAN S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
    [12]
    NIKIFOROV D, EFIMOV S, PROVORNYKH I. Studying how the configuration of a genetic algorithm affects the solution of a problem[C]. Proceedings of 2024 International Russian Smart Industry Conference, IEEE, 2024: 768-772.
    [13]
    LIU Y K, YU X, XUE J P, et al. A flexible phase error compensation method based on probability distribution functions in phase measuring profilometry[J]. Optics & Laser Technology, 2020, 129: 106267.
    [14]
    WANG Y W, ZHU H J, CAI J X, et al. Intensity-averaged double three-step phase-shifting algorithm with color-encoded fringe projection[J]. Photonics, 2022, 9(3): 173. doi: 10.3390/photonics9030173
    [15]
    KAMAGARA A, WANG X ZH, LI S K. Towards gamma-effect elimination in phase measurement profilometry[J]. Optik, 2018, 172: 1089-1099. doi: 10.1016/j.ijleo.2018.07.059
    [16]
    MUÑOZ A, FLORES J L, PARRA-ESCAMILLA G, et al. Least-squares gamma estimation in fringe projection profilometry[J]. Applied Optics, 2021, 60(5): 1137-1142. doi: 10.1364/AO.415056
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article views(29) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return