Citation: | JIANG Hong, YAO Zhen-dong, YANG Li-wei, XU Peng, QIANG Li-e. Echo state network-based data recovery method for low-low satellite-to-satellite tracking missions in laser interferometry[J]. Chinese Optics. doi: 10.37188/CO.2024-0177 |
As a follow-on mission to the GRACE low-low satellite-to-satellite tracking gravity mission, one of the twin satellites of laser ranging interferometer gravity mission GRACE Follow-On experienced an anomaly in its accelerometer payload after one month of operation. This anomaly resulted in the loss of scientific measurement data, a situation similar to the final phase of the GRACE. Therefore, research on accelerometer data recovery is important to achieve the detection objectives of both GRACE and GRACE Follow-On. This paper proposes a novel method for accelerometer data recovery and reconstruction based on the Echo State Network in machine learning. By constructing a mapping relationship of accelerometer data between the twin satellites using the Echo State Network and improving the network performance through Bayesian optimization, this method can achieve high-precision and high-efficiency reconstruction of missing accelerometer data. Through experimental comparison with measured data, in the frequency band of gravity field detection, the prediction results in the along-track and radial directions have been shown to reach the level of
[1] |
TAPLEY B D, BETTADPUR S, RIES J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683): 503-505.
|
[2] |
TAPLEY B D, WATKINS M M, FLECHTNER F, et al. Contributions of GRACE to understanding climate change[J]. Nature Climate Change, 2019, 9(5): 358-369.
|
[3] |
TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607.
|
[4] |
FENG W, ZHONG M, LEMOINE J M, et al. Evaluation of groundwater depletion in north China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118. doi: 10.1002/wrcr.20192
|
[5] |
CHEN J L, CAZENAVE A, DAHLE C, et al. Applications and challenges of GRACE and GRACE Follow-On satellite gravimetry[J]. Surveys in Geophysics, 2022, 43(1): 305-345.
|
[6] |
苏晓莉, 平劲松, 叶其欣. GRACE卫星重力观测揭示华北地区陆地水量变化[J]. 中国科学: 地球科学,2011,54(12):1965-1970.
SU X L, PING J S, YE Q X. Terrestrial water variations in the North China Plain revealed by the GRACE mission[J]. Science China Earth Sciences, 2011, 54(12): 1965-1970.
|
[7] |
王正涛. 卫星跟踪卫星测量确定地球重力场的理论与方法[D]. 武汉: 武汉大学, 2005.
WANG ZH T. Theory and methodology of earth gravity field recovery by satellite-to-satellite tracking data[D]. Wuhan: Wuhan University, 2005. (in Chinese).
|
[8] |
GAFUROV A, SELYUZHENOK V, LATINOVIC M, et al. GRACE observes the natural and irrigation-induced regional redistribution of water storage in Central Asia[J]. Journal of Hydrology: Regional Studies, 2024, 56: 101994.
|
[9] |
LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record: GRACE follow-on instrument and science data performance[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088306. doi: 10.1029/2020GL088306
|
[10] |
KORNFELD R P, ARNOLD B W, GROSS M A, et al. GRACE-FO: the gravity recovery and climate experiment follow-on mission[J]. Journal of Spacecraft and Rockets, 2019, 56(3): 931-951.
|
[11] |
罗志才, 钟波, 周浩, 等. 利用卫星重力测量确定地球重力场模型的进展[J]. 武汉大学学报·信息科学版,2022,47(10):1713-1727.
LUO ZH C, ZHONG B, ZHOU H, et al. Progress in determining the earth's gravity field model by satellite gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1713-1727. (in Chinese).
|
[12] |
ABICH K, ABRAMOVICI A, AMPARAN B, et al. In-orbit performance of the GRACE follow-on laser ranging interferometer[J]. Physical Review Letters, 2019, 123(3): 031101.
|
[13] |
王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学,2024,54(7):270405.
WANG J, QI K Q, WANG SH X, et al. Advance and prospect in the study of laser interferometry technology for space gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(7): 270405. (in Chinese).
|
[14] |
SAVE H V, BETTADPUR S V, TAPLEY B D. Single accelerometer gravity solutions for GRACE[C]. AGU Fall Meeting, American Geophysical Union, 2006: G13A-0026.
|
[15] |
SAVE H. GRACE battery status and science impact[C]. GRACE Science Team Meeting, 2016. (查阅网上资料, 未找到本条文献出版者, 请确认) .
|
[16] |
BANDIKOVA T, MCCULLOUGH C, KRUIZINGA G L, et al. GRACE accelerometer data transplant[J]. Advances in Space Research, 2019, 64(3): 623-644.
|
[17] |
BEHZADPOUR S, MAYER-GÜRR T, KRAUSS S. GRACE follow-on accelerometer data recovery[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021297.
|
[18] |
张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制,2018,47(4):385-397.
ZHANG R, LI W P, MO T. Review of deep learning[J]. Information and Control, 2018, 47(4): 385-397. (in Chinese).
|
[19] |
SHILENGWE C, BANDA K, NYAMBE I. Machine learning downscaling of GRACE/GRACE-FO data to capture spatial-temporal drought effects on groundwater storage at a local scale under data-scarcity[J]. Environmental Systems Research, 2024, 13(1): 38.
|
[20] |
JAEGER H, HAAS H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
|
[21] |
SUN CH X, SONG M X, CAI D R, et al. A systematic review of echo state networks from design to application[J]. IEEE Transactions on Artificial Intelligence, 2024, 5(1): 23-37.
|
[22] |
GASPARIN A, LUKOVIC S, ALIPPI C. Deep learning for time series forecasting: the electric load case[J]. CAAI Transactions on Intelligence Technology, 2022, 7(1): 1-25. doi: 10.1049/cit2.12060
|
[23] |
LI ZH, YANG Y F. Universality and approximation bounds for echo state networks with random weights[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2720-2732.
|
[24] |
CHEN X F, LIU M, LI SH. Echo state network with probabilistic regularization for time series prediction[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(8): 1743-1753. doi: 10.1109/JAS.2023.123489
|
[25] |
LIU CH, ZHANG H G, LUO Y H, et al. Dual heuristic programming for optimal control of continuous-time nonlinear systems using single echo state network[J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1701-1712.
|
[26] |
SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems, Curran Associates Inc. , 2012: 2951-2959.
|
[27] |
BECKERS T. An introduction to Gaussian process models. arXiv preprint arXiv: 2102.05497, 2021.
|
[28] |
HE X, ZHAO K Y, CHU X W. AutoML: a survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021, 212: 106622. doi: 10.1016/j.knosys.2020.106622
|