Turn off MathJax
Article Contents
ZENG Xiao-qiang, LI Pan, DONG Peng, YANG Ran. Calculation of laser interference quantum noise in gravitational wave detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0180
Citation: ZENG Xiao-qiang, LI Pan, DONG Peng, YANG Ran. Calculation of laser interference quantum noise in gravitational wave detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0180

Calculation of laser interference quantum noise in gravitational wave detection

cstr: 32171.14.CO.2024-0180
Funds:  Supported by the National Key Research and Development Program (No. 2020YFC2200901); the Research Funds of Hangzhou Institute for Advanced Study, UCAS (No. 2022ZZ01006)
More Information
  • Quantum noise is one of the main noises that affect laser interference gravitational wave detection. To cope with quantum noise and further improve detection sensitivity, this paper applies the quantum transfer function method to rederive the source attribution of quantum noise in traditional Michelson interferometers. The results show that for two types of quantum noise, radiation pressure noise and shot noise, radiation pressure noise can be directly attributed to the amplitude quadrature fluctuations of vacuum fluctuations at the unused port of the interferometer, while shot noise can only be completely attributed to the phase quadrature fluctuations at the unused port under certain conditions. Under the premise of clearly knowing the source attribution of quantum noise, squeezed light technology can improve the sensitivity of detectors. However, when adopting unequal arm interference detection schemes, attention must be paid to the length difference between the two unequal arm lengths. Finally, this article also mentions the issues that may need to be considered when promoting the application of squeezed light technology in space gravitational wave detection, including the impact of weak light lock-in amplification technology, the relationship between different interferometers, the impact of data post-processing, and the generation of squeezed light.

     

  • loading
  • [1]
    COLPI M, DANZMANN K, HEWITSON M, et al. LISA definition study report[J]. arXiv: 2402.07571, 2024. (查阅网上资料, 未能确认文献类型, 请确认) .
    [2]
    HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685686.
    [3]
    SAULSON P R. Fundamentals of Interferometric Gravitational Wave Detectors[M]. 2nd ed. Hackensack: World Scientific, 2017.
    [4]
    CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708. doi: 10.1103/PhysRevD.23.1693
    [5]
    MCKENZIE K, GROSSE N, BOWEN W P, et al. Squeezing in the audio gravitational-wave detection band[J]. Physical Review Letters, 2004, 93(16): 161105. doi: 10.1103/PhysRevLett.93.161105
    [6]
    VAHLBRUCH H, CHELKOWSKI S, HAGE B, et al. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Physical Review Letters, 2006, 97(1): 011101. doi: 10.1103/PhysRevLett.97.011101
    [7]
    The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 2011, 7(12): 962-965. doi: 10.1038/nphys2083
    [8]
    TSE M, YU H C, KIJBUNCHOO N, et al. Quantumenhanced advanced LIGO detectors in the era of gravitationalwave astronomy[J]. Physical Review Letters, 2019, 123(23): 231107. doi: 10.1103/PhysRevLett.123.231107
    [9]
    ACERNESE F, AGATHOS M, AIELLO L, et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light[J]. Physical Review Letters, 2019, 123(23): 231108. doi: 10.1103/PhysRevLett.123.231108
    [10]
    GANAPATHY D, JIA W, NAKANO M, et al. Broadband quantum enhancement of the LIGO detectors with frequencydependent squeezing[J]. Physical Review X, 2023, 13(4): 041021. doi: 10.1103/PhysRevX.13.041021
    [11]
    ACERNESE F, AGATHOS M, AIN A, et al. Frequencydependent squeezed vacuum source for the advanced virgo gravitationalwave detector[J]. Physical Review Letters, 2023, 131(4): 041403. doi: 10.1103/PhysRevLett.131.041403
    [12]
    BACHOR H A, RALPH T C. A Guide to Experiments in Quantum Optics[M]. 3rd ed. Weinheim: Wiley-VCH, 2019.
    [13]
    罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447. doi: 10.6052/1000-0992-13-044

    LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese). doi: 10.6052/1000-0992-13-044
    [14]
    GERRY C C, KNIGHT P L. Introductory Quantum Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
    [15]
    GRYNBERG G, ASPECT A, FABRE C. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[M]. Cambridge: Cambridge University Press, 2010.
    [16]
    ACERNESE F, AGATHOS M, AIELLO L, et al. Quantum backaction on kg-scale mirrors: observation of radiation pressure noise in the advanced Virgo detector[J]. Physical Review Letters, 2020, 125(13): 131101. doi: 10.1103/PhysRevLett.125.131101
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views(143) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return