Turn off MathJax
Article Contents
LIU Ye, SHI Xing-jian, CAI Zhi-ming, YANG Wen-zhe, LI Hua-wang. Magnetic field reconstruction at test mass using the multi-stage bias correction model[J]. Chinese Optics. doi: 10.37188/CO.2024-0181
Citation: LIU Ye, SHI Xing-jian, CAI Zhi-ming, YANG Wen-zhe, LI Hua-wang. Magnetic field reconstruction at test mass using the multi-stage bias correction model[J]. Chinese Optics. doi: 10.37188/CO.2024-0181

Magnetic field reconstruction at test mass using the multi-stage bias correction model

cstr: 32171.14.CO.2024-0181
Funds:  Supported by
More Information
  • Corresponding author: xxxxxx.com
  • Received Date: 05 Oct 2024
  • Accepted Date: 21 Jan 2025
  • Available Online: 22 Jan 2025
  • To precisely evaluate the noise from magnetic field and magnetic gradient fluctuations affecting test masses in space gravitational wave detection missions, a Multi-stage Bias Correction Model (MSBCM) is studied for the accurate reconstruction of magnetic fields at test mass. Built upon ensemble learning techniques, the MSBCM employs both standard fully connected neural network modules and residual fully connected neural network modules as weak predictors. Each weak predictor sequentially corrects the prediction biases from the preceding model, cumulatively forming a robust predictive model that achieves precise magnetic field reconstruction at test mass locations. Magnetic field reconstruction experiments conducts on the LISA Pathfinder, eLISA, and Taiji-2 space gravitational wave detection spacecraft, and the proposed MSBCM method demonstrates the lowest mean relative errors along sensitive axes in comparison with other interpolation or estimation methods. In simulating on-orbit experiments, the MSBCM method achieves the root mean square error of magnetic field fluctuations and gradient fluctuations in acceleration noise on the sensitive axis of test mass 1 of 1.68×10−17 (m/s2/Hz1/2) and 4.00×10−17 (m/s2/Hz1/2), respectively. Additionally, MSBCM closely only to the distance weighted method in minimizing the root mean square error for magnetic field fluctuations and gradient acceleration noise on the sensitive axis of test mass 2, records at 1.72×10−16 (m/s2/Hz1/2) and 2.93×10−16 (m/s2/Hz1/2), further validating the advantages of the proposed method in assessing magnetic fields around test masses in space-based gravitational wave detection missions.

     

  • loading
  • [1]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [2]
    WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3): 200-202. doi: 10.1038/s41567-019-0462-3
    [3]
    SALA L. Residual test mass acceleration in LISA Pathfinder: in-depth statistical analysis and physical sources[D]. Trento: University of Trento, 2023.
    [4]
    ZHANG H Y, XU P, YE Z Q, et al. A systematic approach for inertial sensor calibration of gravity recovery satellites and its application to Taiji-1 mission[J]. Remote Sensing, 2023, 15(15): 3817. doi: 10.3390/rs15153817
    [5]
    宋长孝, 于信, 白素平, 等. 光轴稳定探测系统无热化光机结构设计[J]. 中国光学,2024,17(4):909-920. doi: 10.37188/CO.2023-0226

    SONG CH X, YU X, BAI S P, et al. Design of athermalization optical machine structure for optical axis stability detection system[J]. Chinese Optics, 2024, 17(4): 909-920. (in Chinese). doi: 10.37188/CO.2023-0226
    [6]
    郭蕊香, 贾晓军, 谢常德, 等. 实用化多功能光压缩器[J]. 物理学报,2002,51(6):1262-1267. doi: 10.3321/j.issn:1000-3290.2002.06.022

    GUO R X, JIA X J, XIE CH D, et al. Compact nonclassical light source——“Squeezer”[J]. Acta Physica Sinica, 2002, 51(6): 1262-1267. (in Chinese). doi: 10.3321/j.issn:1000-3290.2002.06.022
    [7]
    CAÑIZARES P, CONCHILLO A, GARCÍA-BERRO E, et al. The diagnostics subsystem on board LISA pathfinder and LISA[J]. Classical and Quantum Gravity, 2009, 26(9): 094005. doi: 10.1088/0264-9381/26/9/094005
    [8]
    MATEOS I, DIAZ-AGUILÓ M, GESA L, et al. Magnetic field measurement using chip-scale magnetometers in eLISA[C]. Journal of Physics: Conference Series, IOP Publishing, 2015: 012028.
    [9]
    MATEOS I, RAMOS-CASTRO J, LOBO A. Low-frequency noise characterization of a magnetic field monitoring system using an anisotropic magnetoresistance[J]. Sensors and Actuators A: Physical, 2015, 235: 57-63. doi: 10.1016/j.sna.2015.09.021
    [10]
    DIAZ-AGUILÓ M, GARCÍA-BERRO E, LOBO A. Theory and modelling of the magnetic field measurement in LISA PathFinder[J]. Classical and Quantum Gravity, 2010, 27(3): 035005. doi: 10.1088/0264-9381/27/3/035005
    [11]
    MATEOS I, DÍAZ-AGUILÓ M, RAMOS-CASTRO J, et al. Interpolation of the magnetic field at the test masses in eLISA[J]. Classical and Quantum Gravity, 2015, 32(16): 165003. doi: 10.1088/0264-9381/32/16/165003
    [12]
    LIU B B, YANG ZH, QIANG L E, et al. Magnetic field recovery technique based on distance weighting multipole expansion method[J]. Europhysics Letters, 2023, 143(5): 59003. doi: 10.1209/0295-5075/acf51f
    [13]
    SPANTIDEAS S T, CAPSALIS C N. Validation of a source identification method for prediction of low-frequency magnetic fields in space missions[J]. IEEE Magnetics Letters, 2018, 9: 1-5.
    [14]
    TROUGNOU L. Ecss space systems electromagnetic compatibility handbook[C]. 2012 ESA Workshop on Aerospace EMC, IEEE, 2012: 1-6.
    [15]
    TSATALAS S, VERGOS D, SPANTIDEAS S T, et al. A novel multi-magnetometer facility for on-ground characterization of spacecraft equipment[J]. Measurement, 2019, 146: 948-960. doi: 10.1016/j.measurement.2019.07.016
    [16]
    JACKSON J D. Classical Electrodynamics[M]. New York: Wiley, 1999.
    [17]
    柴国志, 黄亮, 乔亮, 等. 星上剩磁对惯性传感器的影响[J]. 中国光学,2019,12(3):515-525. doi: 10.3788/co.20191203.0515

    CHAI G ZH, HUANG L, QIAO L, et al. Effect of the on-board residual magnetism on inertial sensors[J]. Chinese Optics, 2019, 12(3): 515-525. (in Chinese). doi: 10.3788/co.20191203.0515
    [18]
    VITALE S. Effect of eddy currents on down-conversion of magnetic noise[J]. Memo LISA Technology Package, 2007. (查阅网上资料, 不确定本条文献类型及格式是否正确, 请确认) .
    [19]
    TROUGNOU L. Ac magnetic susceptibility of LisaPF test masses[R]. ESTEC, 2007. (查阅网上资料, 未找到本条文献出版地, 请确认) .
    [20]
    FERTIN D, TROUGNOU L. LisaPF test masses acceleration noise due to eddy currents[R]. ESTEC, 2007. (查阅网上资料, 未找到本条文献出版地, 请确认) .
    [21]
    YANG F C, BAI Y ZH, HONG W, et al. A charge control method for space-mission inertial sensor using differential UV LED emission[J]. Review of Scientific Instruments, 2020, 91(12): 124502. doi: 10.1063/5.0013232
    [22]
    SUMNER T J, MUELLER G, CONKLIN J W, et al. Charge induced acceleration noise in the LISA gravitational reference sensor[J]. Classical and Quantum Gravity, 2020, 37(4): 045010. doi: 10.1088/1361-6382/ab5f6e
    [23]
    TASKINEN J, YLIRUUSI J. Prediction of physicochemical properties based on neural network modelling[J]. Advanced Drug Delivery Reviews, 2003, 55(9): 1163-1183. doi: 10.1016/S0169-409X(03)00117-0
    [24]
    DIAZ-AGUILO M, LOBO A, GARCÍA–BERRO E. Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem[J]. Experimental Astronomy, 2011, 30(1): 1-21. doi: 10.1007/s10686-011-9215-8
    [25]
    XU L. A proportional differential control method for a time-delay system using the Taylor expansion approximation[J]. Applied Mathematics and Computation, 2014, 236: 391-399. doi: 10.1016/j.amc.2014.02.087
    [26]
    SHEVTSOVA I. On the accuracy of the approximation of the complex exponent by the first terms of its Taylor expansion with applications[J]. Journal of Mathematical Analysis and Applications, 2014, 418(1): 185-210. doi: 10.1016/j.jmaa.2014.03.075
    [27]
    LU G Y, WONG D W. An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & Geosciences, 2008, 34(9): 1044-1055.
    [28]
    ALAEE R, ROCKSTUHL C, FERNANDEZ-CORBATON I. An electromagnetic multipole expansion beyond the long-wavelength approximation[J]. Optics Communications, 2018, 407: 17-21. doi: 10.1016/j.optcom.2017.08.064
    [29]
    HE K M, ZHANG X Y, REN SH Q, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
    [30]
    RANGANATHAN A. The levenberg-marquardt algorithm[J]. Tutoral on LM algorithm, 2004, 11(1): 101-110. (查阅网上资料, 未找到本条文献卷期页码, 请确认) .
    [31]
    CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, 2016: 785-794.
    [32]
    MATEOS I, DIAZ-AGUILÓ M, GIBERT F, et al. Magnetic back action effect of magnetic sensors for eLISA/NGO[C]. 9th International LISA Symposium, ASP, 2013: 341-345.
    [33]
    STONE E C, FRANDSEN A M, MEWALDT R A, et al. The advanced composition explorer[J]. Space Science Reviews, 1998, 86(1-4): 1-22.
    [34]
    KESKAR N S, SOCHER R. Improving generalization performance by switching from Adam to SGD[J]. arXiv: 1712.07628, 2017. (查阅网上资料, 不确定本条文献类型及格式是否正确, 请确认) .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article views(85) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return