Citation: | FANG Zi-ruo, ZHU Zhen-cai, CAI Zhi-ming, LI Hua-wang, LIU Ye, TANG Ning-biao, SHI Xing-jian. Optimization of optical metrology noise link metrics for space-based gravitational wave detection spacecraft[J]. Chinese Optics. doi: 10.37188/CO.2024-0185 |
To meet the picometer-level ranging accuracy requirements for space-based gravitational wave detection, this paper proposes an optimization method for the inter-spacecraft optical metrology noise link metrics. The method optimizes the design parameter metrics to ensure the inter-spacecraft ranging accuracy while improving the technical feasibility of the spacecraft design. Firstly, the design parameters and objective functions of the optimization problem are clearly defined, and Sobol sensitivity analysis is used to effectively identify the key parameters. Subsequently, the optimization problem is solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), from which the optimal solution is selected from the Pareto front based on the requirements. On this basis, the design metrics for each parameter are determined, and an initial metric tree is constructed. Simulation experiments verify the feasibility of the method and show that by optimizing the noise link metrics in accordance with the proposed approach, it is possible to achieve an optical metrology noise level of 8 pm/√Hz@1mHz~0.1Hz while obtaining the most technically feasible design solution. This study provides a valuable reference framework and approach for the construction of the metric system in the subsequent spacecraft design phase, demonstrating strong applicability and laying the foundation for future gravitational wave detection missions.
[1] |
DANZMANN K, RÜDIGER A. LISA technology—concept, status, prospects[J]. Classical and Quantum Gravity, 2003, 20(10): S1-S9. doi: 10.1088/0264-9381/20/10/301
|
[2] |
LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: science and technology[J]. Results in Physics, 2020, 16: 102918. doi: 10.1016/j.rinp.2019.102918
|
[3] |
LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
|
[4] |
BAILES M, BERGER B K, BRADY P R, et al. Gravitational-wave physics and astronomy in the 2020s and 2030s[J]. Nature Reviews Physics, 2021, 3(5): 344-366. doi: 10.1038/s42254-021-00303-8
|
[5] |
PITKIN M, REID S, ROWAN S, et al. Gravitational wave detection by interferometry (ground and space)[J]. Living Reviews in Relativity, 2011, 14(1): 5. doi: 10.12942/lrr-2011-5
|
[6] |
BOND C, BROWN D, FREISE A, et al. Interferometer techniques for gravitational-wave detection[J]. Living Reviews in Relativity, 2016, 19(1): 3. doi: 10.1007/s41114-016-0002-8
|
[7] |
PRINCE T A, TINTO M, LARSON S L, et al. LISA optimal sensitivity[J]. Physical Review D, 2002, 66(12): 122002. doi: 10.1103/PhysRevD.66.122002
|
[8] |
BORWANKAR P, KAPANIA R K, INOYAMA D, et al. Multidisciplinary design analysis and optimization of space vehicle structures[C]. Proceedings of the AIAA SCITECH 2024 Forum, AIAA, 2024: 2898.
|
[9] |
ISAJI M, TAKUBO Y, HO K. Multidisciplinary design optimization approach to integrated space mission planning and spacecraft design[J]. Journal of Spacecraft and Rockets, 2022, 59(5): 1660-1670. doi: 10.2514/1.A35284
|
[10] |
LEE D Y. Multidisciplinary optimization approach for design and operation of constrained and complex-shaped space systems[D]. Ann Arbor: University of Michigan, 2016.
|
[11] |
LIU CH R, XU ZH B, HAN K, et al. Optimization design of core ultra-stable structure for space gravitational wave detection satellite based on response surface methodology[J]. Aerospace, 2024, 11(7): 518. doi: 10.3390/aerospace11070518
|
[12] |
SONG J, FAN W T, FANG S J, et al. Optimized design of a gravitational wave telescope system based on pupil aberration[J]. Applied Optics, 2024, 63(7): 1815-1821. doi: 10.1364/AO.515579
|
[13] |
房思俊, 李博宏, 何斌, 等. 空间引力波望远镜主镜组件结构设计及热稳定性分析[J]. 光电工程,2024,51(2):230157.
FANG S J, LI B H, HE B, et al. Design and thermal stability analysis of primary mirror assembly for space-borne gravitational wave telescope[J]. Opto-Electronic Engineering, 2024, 51(2): 230157. (in Chinese).
|
[14] |
李博宏, 罗健, 丘敏艳, 等. 引力波探测望远镜超低热变形桁架支撑结构设计技术[J]. 光电工程,2023,50(11):230155.
LI B H, LUO J, QIU M Y, et al. Design technology of the truss support structure of the ultra-low thermal deformation gravitational wave detection telescope[J]. Opto-Electronic Engineering, 2023, 50(11): 230155. (in Chinese).
|
[15] |
潘宇倩, 冯文婧, 张弓, 等. 导航卫星自主健康管理指标体系构建方法[J]. 航天器工程,2021,30(4):8-14. doi: 10.3969/j.issn.1673-8748.2021.04.002
PAN Y Q, FENG W J, ZHANG G, et al. Construction method of navigation satellite health management evaluation index system[J]. Spacecraft Engineering, 2021, 30(4): 8-14. (in Chinese). doi: 10.3969/j.issn.1673-8748.2021.04.002
|
[16] |
谢军, 张建军, 王岗. 北斗卫星导航系统测量误差指标体系[J]. 宇航学报,2018,39(9):977-985. doi: 10.3873/j.issn.1000-1328.2018.09.005
XIE J, ZHANG J J, WANG G. Measurement error index system of Bei Dou satellite navigation system[J]. Journal of Astronautics, 2018, 39(9): 977-985. (in Chinese). doi: 10.3873/j.issn.1000-1328.2018.09.005
|
[17] |
朱伊明, 张玉珠, 陈斌, 等. 基于MBSE的空间引力波探测系统指标管理及其探测灵敏度分析[J]. 图学学报,2024,45(2):259-267.
ZHU Y M, ZHANG Y ZH, CHEN B, et al. Space gravitational wave detection parameter management and performance analysis based on MBSE[J]. Journal of Graphics, 2024, 45(2): 259-267. (in Chinese).
|
[18] |
LUO Z R, WANG Y, WU Y L, et al. The Taiji program: a concise overview[J]. Progress of Theoretical and Experimental Physics, 2021, 2021(5): 05A108. doi: 10.1093/ptep/ptaa083
|
[19] |
王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学, 2024, 54(7): 270405.
WANG J, QI K Q, WANG SH X, et al. Advance and prospect in the study of laser interferometry technology for space gravitational wave detection[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2024, 54(7): 270405. (in Chinese).
|
[20] |
BARKE S. Inter-spacecraft frequency distribution for future gravitational wave observatories[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015.
|
[21] |
KULKARNI S A. Technology development for ground verification of dimensional stability of the LISA telescope[D]. Gainesville: University of Florida, 2022.
|
[22] |
FLEDDERMANN R, DIEKMANN C, STEIER F, et al. Sub-pm
|
[23] |
WANNER G, KARNESIS N. Preliminary results on the suppression of sensing cross-talk in LISA Pathfinder[J]. Journal of Physics: Conference Series, 2017, 840(1): 012043.
|
[24] |
PIJNENBURG J A C M, RIJNVELD N. Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM[J]. Proceedings of SPIE, 2017, 10565: 105652Z.
|
[25] |
BENDER P L. Wavefront distortion and beam pointing for LISA[J]. Classical and Quantum Gravity, 2005, 22(10): S339-S346. doi: 10.1088/0264-9381/22/10/027
|
[26] |
IGEL C, HANSEN N, ROTH S. Covariance matrix adaptation for multi-objective optimization[J]. Evolutionary Computation, 2007, 15(1): 1-28. doi: 10.1162/evco.2007.15.1.1
|
[27] |
XU H, XUE B, ZHANG M J. A duplication analysis-based evolutionary algorithm for biobjective feature selection[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 205-218. doi: 10.1109/TEVC.2020.3016049
|
[28] |
NEBRO A J, DURILLO J J, GARCIA-NIETO J, et al. SMPSO: a new PSO-based metaheuristic for multi-objective optimization[C]. Proceedings of the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making, IEEE, 2009: 66-73.
|
[29] |
COELLO C A C, CORTÉS N C. Solving multiobjective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6(2): 163-190. doi: 10.1007/s10710-005-6164-x
|
[30] |
ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. doi: 10.1109/4235.797969
|