Turn off MathJax
Article Contents
WANG Fang, SHE Ming-chao, PENG Xiao-dong, QIANG Li'e, XU Peng, TANG Wen-lin, ZHANG Yu-zhu. Simulation study of residual gas noise in high-precision inertial sensors with optical readout[J]. Chinese Optics. doi: 10.37188/CO.2024-0186
Citation: WANG Fang, SHE Ming-chao, PENG Xiao-dong, QIANG Li'e, XU Peng, TANG Wen-lin, ZHANG Yu-zhu. Simulation study of residual gas noise in high-precision inertial sensors with optical readout[J]. Chinese Optics. doi: 10.37188/CO.2024-0186

Simulation study of residual gas noise in high-precision inertial sensors with optical readout

cstr: 32171.14.CO.2024-0186
Funds:  Supported by the National Key Research and Development Program (No. 2020YFC2200603, No. 2020YFC2201303); Project supported by the National Science Foundation for Young Scientists of China (No.11905017); Key Deployment Projects of the Chinese Academy of Sciences (No. KGFZD-145-24-04-03)
More Information
  • Corresponding author: qianglie@nssc.ac.cn
  • Received Date: 08 Oct 2024
  • Accepted Date: 17 Dec 2024
  • Available Online: 22 Jan 2025
  • High-precision inertial sensors have broad application prospects in fields such as aerospace, navigation, and precision measurement. However, the accurate evaluation of noise in these sensors is imperative for optimal performance, with residual gas noise being a significant source of noise in inertial sensors. The current methods for calculating the level of residual gas noise lack numerical simulations based on the actual structure of inertial sensors, which hinders the ability to meet the demands of high-precision noise analysis. This paper proposes a novel residual gas noise simulation method based on ray tracing technology. Firstly, the method simulates the trajectories of residual gas inside the electrode cage of the inertial sensor under orbital conditions using a real inertial sensor model to obtain the statistical characteristics of the residual gas acceleration noise. Secondly, the influence of different pressures and temperatures on the residual gas noise is investigated. Finally, the dependence of the residual gas noise on the gap size of the non-sensitive axis is analyzed. The simulation results demonstrate the efficacy of Ray Tracing technology in simulating and tracking the interaction between the residual gas and the sensitive structures, achieving a high-precision simulation of residual gas acceleration noise at the level of 10−15. Temperature and pressure have been shown to significantly affect the level of residual gas acceleration noise, and reducing the gap between the electrode cage and the test mass will increase the power spectrum of the residual gas noise in the inertial sensor.

     

  • loading
  • [1]
    AHARONI J. The Special Theory of Relativity[J]. Oxford: Clarendon Press, 1959.
    [2]
    HOGAN C J. Gravitational wave sources from new physics[J]. AIP Conference Proceedings, 2006, 873(1): 30-40.
    [3]
    SCHILLING G. Ripples in Spacetime: Einstein, Gravitational Waves, and the Future of Astronomy[M]. Cambridge: Harvard University Press, 2017.
    [4]
    WU Y L, HU W R, WANG J Y, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599. doi: 10.11728/cjss2023.04.yg08
    [5]
    WANNER G. Space-based gravitational wave detection and how LISA pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3): 200-202. doi: 10.1038/s41567-019-0462-3
    [6]
    ARAÚJO H, BOATELLA C, CHMEISSANI M, et al. LISA and LISA PathFinder, the Endeavour to detect low frequency GWs[J]. Journal of Physics: Conference Series, 2007, 66: 012003.
    [7]
    EINSTEIN A, ROSEN N. On gravitational waves[J]. Journal of the Franklin Institute, 1937, 223(1): 43-54. doi: 10.1016/S0016-0032(37)90583-0
    [8]
    WANNER G. Complex optical systems in space: numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2010.
    [9]
    DANZMANN K, PRINCE T A, Binetruy P, et al. LISA: unveiling a hidden universe[J]. Assessment Study Report ESA/SRE, 2011, 3(2). (查阅网上资料, 未找到本条文献信息, 请确认) .
    [10]
    SALA L. Residual test mass acceleration in LISA Pathfinder: in-depth statistical analysis and physical sources[D]. Trento: University of Trento, 2023.
    [11]
    ARMANO M, AUDLEY H, AUGER G, et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23): 231101. doi: 10.1103/PhysRevLett.116.231101
    [12]
    ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μ Hz[J]. Physical Review Letters, 2018, 120(6): 061101. doi: 10.1103/PhysRevLett.120.061101
    [13]
    ZHANG H Y, XU P, YE Z Q, et al. A systematic approach for inertial sensor calibration of gravity recovery satellites and its application to Taiji-1 mission[J]. Remote Sensing, 2023, 15(15): 3817. doi: 10.3390/rs15153817
    [14]
    BADARACCO F, VAN HEIJNINGEN J V, FERREIRA E, et al. A cryogenic and superconducting inertial sensor for the lunar gravitational–wave antenna, the Einstein telescope and selene-physics[C]. The Sixteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG16 Meeting on General Relativity Online; 5-10 July 2021, World Scientific, 2023: 3245-3253. (查阅网上资料, 未找到本条文献信息, 请确认) .
    [15]
    BERMÚDEZ A, HERVELLA-NIETO L, RODRÍGUEZ R. Finite element computation of the vibrations of a plate-fluid system with interface damping[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3021-3038. doi: 10.1016/S0045-7825(00)00380-7
    [16]
    CHRISTIAN R G. The theory of oscillating-vane vacuum gauges[J]. Vacuum, 1966, 16(4): 175-178. doi: 10.1016/0042-207X(66)91162-6
    [17]
    BAO M H, YANG H, YIN H, et al. Energy transfer model for squeeze-film air damping in low vacuum[J]. Journal of Micromechanics and Microengineering, 2002, 12(3): 341-346. doi: 10.1088/0960-1317/12/3/322
    [18]
    SUIJLEN M A G, KONING J J, VAN GILS M A J, et al. Squeeze film damping in the free molecular flow regime with full thermal accommodation[J]. Sensors and Actuators A: Physical, 2009, 156(1): 171-179. doi: 10.1016/j.sna.2009.03.025
    [19]
    DOLESI R, HUELLER M, NICOLODI D, et al. Brownian force noise from molecular collisions and the sensitivity of advanced gravitational wave observatories[J]. Physical Review D, 2011, 84(6): 063007. doi: 10.1103/PhysRevD.84.063007
    [20]
    ZHAO Y J, LI G L, LIU L, et al. Experimental verification of and physical interpretation for adsorption-dependent squeeze-film damping[J]. Physical Review Applied, 2023, 19(4): 044005. doi: 10.1103/PhysRevApplied.19.044005
    [21]
    HUELLER M, CAVALLERI A, DOLESI R, et al. Torsion pendulum facility for ground testing of gravitational sensors for LISA[J]. Classical and Quantum Gravity, 2002, 19(7): 1757-1765. doi: 10.1088/0264-9381/19/7/372
    [22]
    HOLLINGTON D. The charge management system for LISA and LISA Pathfinder[D]. London: Imperial College London, 2011.
    [23]
    同济大学应用数学系. 高等数学(下册)[M]. 5版. 北京: 高等教育出版社, 2002. (查阅网上资料, 未找到对应的英文翻译信息, 请确认补充) .
    [24]
    CAVALLERI A, CIANI G, DOLESI R, et al. Increased Brownian force noise from molecular impacts in a constrained volume[J]. Physical Review Letters, 2009, 103(14): 140601. doi: 10.1103/PhysRevLett.103.140601
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(178) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return