Citation: | WANG Zi-jing, LI Xiang-jun, YAN De-xian. Terahertz broadband absorption spectrum enhancement based on asymmetric dielectric meta-grating on a metal substrate[J]. Chinese Optics. doi: 10.37188/CO.2024-0197 |
Terahertz molecular fingerprinting is a promising method for label-free detection, particularly for micro or trace amount samples in practical applications. However, the wavelength of terahertz waves is much larger than the size of the molecules to be tested, resulting in a weak interaction between the waves and the matter. To address this challenge, additional structures are needed to enhance the absorption of electromagnetic waves by trace amount samples. In this study, we constructed an inverted asymmetric dielectric grating structure on a metal substrate. By utilizing guided-mode resonance (GMR) and a bound state in the continuum (BIC) effect, the terahertz absorption spectrum of thin film samples was significantly enhanced. The enhanced absorption spectra can be easily obtained by measuring the reflected absorption signal. The samples are coated on the flat back of the inverted dielectric grating, which simplifies the preparation process. For instance, when the thickness of an α-lactose film is 0.2 μm, the absorption enhancement factor reaches 236. This study provides a new method for detecting trace analytes in the terahertz band.
[1] |
KOCH M, MITTLEMAN D M, ORNIK J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3(1): 48. doi: 10.1038/s43586-023-00232-z
|
[2] |
DAMARI R, WEINBERG O, KROTKOV D, et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies[J]. Nature Communications, 2019, 10(1): 3248. doi: 10.1038/s41467-019-11130-y
|
[3] |
WANG P L, LOU J, FANG G Y, et al. Progress on cutting-edge infrared-terahertz biophysics[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(11): 5117-5140. doi: 10.1109/TMTT.2022.3200333
|
[4] |
ZHANG F, WANG H W, TOMINAGA K, et al. Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid-state density functional theory[J]. WIREs Computational Molecular Science, 2016, 6(4): 386-409. doi: 10.1002/wcms.1256
|
[5] |
PENG Y, SHI CH J, ZHU Y M, et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. PhotoniX, 2020, 1(1): 12. doi: 10.1186/s43074-020-00011-z
|
[6] |
YANG L, GUO T X, ZHANG X, et al. Toxic chemical compound detection by terahertz spectroscopy: a review[J]. Reviews in Analytical Chemistry, 2018, 37(3): 20170021.
|
[7] |
LIU X Y, CHEN W, MA Y J, et al. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating: publisher’s note[J]. Photonics Research, 2023, 11(4): 581. doi: 10.1364/PRJ.488861
|
[8] |
QUARANTA G, BASSET G, MARTIN O J F, et al. Recent advances in resonant waveguide gratings[J]. Laser & Photonics Reviews, 2018, 12(9): 1800017.
|
[9] |
SUN L, XU L, WANG J Y, et al. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing[J]. Nanoscale, 2022, 14(27): 9681-9685. doi: 10.1039/D2NR01561G
|
[10] |
李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028. doi: 10.37188/CO.2020-0171
LI X J, HOU X M, CHENG G, et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese). doi: 10.37188/CO.2020-0171
|
[11] |
SEO M, PARK H R. Terahertz biochemical molecule-specific sensors[J]. Advanced Optical Materials, 2020, 8(3): 1900662. doi: 10.1002/adom.201900662
|
[12] |
LI X J, YANG J, YAN D X, et al. Highly enhanced trace amount terahertz fingerprint spectroscopy by multiplexing surface spoof plasmon metasurfaces in a single layer[J]. Optics Communications, 2022, 525: 128777. doi: 10.1016/j.optcom.2022.128777
|
[13] |
SILALAHI H M, CHEN Y P, SHIH Y H, et al. Floating terahertz metamaterials with extremely large refractive index sensitivities[J]. Photonics Research, 2021, 9(10): 1970-1978. doi: 10.1364/PRJ.433335
|
[14] |
李向军, 马婵, 严德贤, 等. 基于介质超表面角度复用的太赫兹增强吸收谱[J]. 中国光学,2022,15(4):731-739. doi: 10.37188/CO.2021-0197
LI X J, MA C, YAN D X, et al. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. (in Chinese). doi: 10.37188/CO.2021-0197
|
[15] |
TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
|
[16] |
LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 2019, 5(5): eaaw2871. doi: 10.1126/sciadv.aaw2871
|
[17] |
LIN J, XUE Y, WANG W J, et al. Enhancing multi-spectral fingerprint sensing for trace explosive molecules with all-silicon metasurfaces[J]. Nanomaterials, 2024, 14(9): 738. doi: 10.3390/nano14090738
|
[18] |
YAN D X, WANG Z H, LI X J, et al. Highly boosted trace-amount terahertz vibrational absorption spectroscopy based on defect one-dimensional photonic crystal[J]. Optics Letters, 2023, 48(7): 1654-1657. doi: 10.1364/OL.486433
|
[19] |
LI X J, WU H, YAN D X, et al. Enhancement of the terahertz absorption spectroscopy based on the stretchable dielectric metasurface[J]. Applied Physics A, 2024, 130(1): 50. doi: 10.1007/s00339-023-07205-9
|
[20] |
KOSHELEV K, BOGDANOV A, KIVSHAR Y, et al. Engineering with bound states in the continuum[J]. Optics and Photonics News, 2020, 31(1): 38-45. doi: 10.1364/OPN.31.1.000038
|
[21] |
GAO X W, HSU C W, ZHEN B, et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs[J]. Scientific Reports, 2016, 6(1): 31908. doi: 10.1038/srep31908
|
[22] |
BYKOV D A, BEZUS E A, DOSKOLOVICH L L. Coupled-wave formalism for bound states in the continuum in guided-mode resonant gratings[J]. Physical Review A, 2019, 99(6): 063805. doi: 10.1103/PhysRevA.99.063805
|
[23] |
HAN S, RYBIN M V, PITCHAPPA P, et al. Guided-mode resonances in all-dielectric terahertz metasurfaces[J]. Advanced Optical Materials, 2020, 8(3): 1900959. doi: 10.1002/adom.201900959
|
[24] |
HU H Y, PAL A K, BERESTENNIKOV A, et al. Surface-enhanced Raman scattering in BIC-driven semiconductor metasurfaces[J]. Advanced Optical Materials, 2024, 12(14): 2302812. doi: 10.1002/adom.202302812
|
[25] |
SHI X M, HAN ZH H. Enhanced terahertz fingerprint detection with ultrahigh sensitivity using the cavity defect modes[J]. Scientific Reports, 2017, 7(1): 13147. doi: 10.1038/s41598-017-13612-9
|
[26] |
XIE Y N, LIU X Y, ZHOU J, et al. Enhancing trace terahertz fingerprint sensing by the lossy silicon metagrating with a gold mirror[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2368-2377. doi: 10.1109/TMTT.2023.3314094
|
[27] |
FEDULOVA E V, NAZAROV M M, ANGELUTS A A, et al. Studying of dielectric properties of polymers in the terahertz frequency range[J]. Proceedings of SPIE, 2012, 8337: 83370I. doi: 10.1117/12.923855
|
[28] |
LI Z, CUI T J, ZHONG X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39-50. doi: 10.1109/MAP.2009.4939018
|
[29] |
XIE Y N, LIU X Y, LI F J, et al. Ultra-wideband enhancement on mid-infrared fingerprint sensing for 2D materials and analytes of monolayers by a metagrating[J]. Nanophotonics, 2020, 9(9): 2927-2935. doi: 10.1515/nanoph-2020-0180
|
[30] |
SHEN S L, LIU X D, SHEN Y C, et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 2022, 10(1): 2101008. doi: 10.1002/adom.202101008
|
[31] |
SUN K L, WANG W, HAN ZH H. High-Q resonances in periodic photonic structures[J]. Physical Review B, 2024, 109(8): 085426. doi: 10.1103/PhysRevB.109.085426
|
[32] |
YAN D X, FENG Q Y, YANG J, et al. Boosting the terahertz absorption spectroscopy based on the stretchable metasurface[J]. Physical Chemistry Chemical Physics, 2023, 25(1): 612-616. doi: 10.1039/D2CP04618K
|
[33] |
ROGGENBUCK A, SCHMITZ H, DENINGER A, et al. Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples[J]. New Journal of Physics, 2010, 12(4): 043017. doi: 10.1088/1367-2630/12/4/043017
|
[34] |
LIANG Y ZH, CUI W L, LI L X, et al. Large-scale plasmonic nanodisk structures for a high sensitivity biosensing platform fabricated by transfer nanoprinting[J]. Advanced Optical Materials, 2019, 7(7): 1801269. doi: 10.1002/adom.201801269
|