Citation: | MU Shuai-wei, WU Hong-bo, ZHANG Xin, MA Lin, YAN Lei, TAN Shuang-long. Design of optical system with wide field of view, broad spectral range for space target detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0198 |
To achieve wide-area detection of space targets, this study designs an optical system design with a broad spectrum range (400 nm−
[1] |
刘科, 何磊. “星链”潜在军事应用能力分析研究[J]. 战术导弹技术,2024(3):148-153.
LIU K, HE L. Analysis and research on the potential military application capability of Starlink[J]. Tactical Missile Technology, 2024(3): 148-153. (in Chinese).
|
[2] |
张煌, 杜雁芸. “星链”军事化发展及其对全球战略稳定性的影响[J]. 国际安全研究,2023,41(5):29-53,157-158.
ZHANG H, DU Y Y. Militarization of Starlink and its impact on global strategic stability[J]. Journal of International Security Studies, 2023, 41(5): 29-53,157-158. (in Chinese).
|
[3] |
黎璐玫, 刘伟骏, 俞越. 空间碎片现状与挑战[J]. 中国无线电,2023(8):33-36.
LI L M, LIU W J, YU Y. Current situation and challenges of space debris[J]. China Radio, 2023(8): 33-36. (in Chinese).
|
[4] |
YANG Y ZH, LI Y J, WANG J, et al. Design of detection optical system with large relative aperture[J]. Proceedings of SPIE, 2022, 12315: 1231515.
|
[5] |
JIAO J C, WANG C, YU Y, et al. Lightweight visible light camera technology for weak space target detection[J]. Proceedings of SPIE, 2023, 12317: 123170I.
|
[6] |
ZHANG G Y, FAN X W, MA Z X, et al. Optical design of space debris detection system with wide field of view[J]. Proceedings of SPIE, 2020, 11570: 1157004.
|
[7] |
ZONG Y H, ZHUANG X X, ZHANG T CH, et al. Design of a wide field camera for detecting dim targets[J]. Proceedings of SPIE, 2022, 12065: 1206542. (查阅网上资料, 不确定本条文献标黄作者信息, 请确认) .
|
[8] |
闫昊昱, 王虎, 薛要克, 等. 大视场红外星敏感器折反式光学系统设计[J]. 飞控与探测,2022,5(5):12-18.
YAN H Y, WANG H, XUE Y K, et al. Design of a catadioptric system for infrared star sensor with wide field of view[J]. Flight Control & Detection, 2022, 5(5): 12-18. (in Chinese).
|
[9] |
陈醒. 天基空间目标探测系统的光学设计与杂散光研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.
CHEN X. Optical system design and stray light research of a space-based detection camera[D]. Changchun: University of Chinese Academy of Sciences, 2018. (in Chinese).
|
[10] |
宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019.
SONG F J, CHEN X, LIU CH. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) .
|
[11] |
LU Y F, ZHOU Y, HEI M, et al. Theoretical and experimental determination of steering mechanism for Risley prism systems[J]. Applied Optics, 2013, 57(7): 1389-1398.
|
[12] |
CURATU E O, CHEVRETTE P C, ST-GERMAIN D. Rotating-prism scanning system to equip an NFOV camera lens[J]. Proceedings of SPIE, 1999, 3779: 154-164. doi: 10.1117/12.368205
|
[13] |
贵超. 旋转双棱镜超分辨率宽视场成像技术研究[D]. 绵阳: 西南科技大学, 2023.
GUI CH. Rotating biprism super-resolution wide field of view imaging technology research[D]. Mianyang: Southwest University of Science and Technology, 2023. (in Chinese).
|
[14] |
杨柠宇. 消色差旋转双光楔系统光学设计与研究[D]. 呼和浩特: 内蒙古大学, 2023.
YANG N Y. Optical design and study of achromatic rotating dual-wedge prism system[D]. Hohhot: Inner Mongolia University, 2023. (in Chinese).
|
[15] |
周远, 鲁亚飞, 黑沫, 等. 旋转双棱镜光束指向解析解[J]. 光学精密工程,2013,21(6):1373-1379. doi: 10.3788/OPE.20132106.1373
ZHOU Y, LU Y F, HEI M, et al. Analytic solution of optical beam steering based on rotational double prisms[J]. Optics and Precision Engineering, 2013, 21(6): 1373-1379. (in Chinese). doi: 10.3788/OPE.20132106.1373
|
[16] |
周远, 范世珣, 刘光灿, 等. 旋转双棱镜引起的成像畸变及其校正[J]. 光学学报,2015,35(9):0911003. doi: 10.3788/AOS201535.0911003
ZHOU Y, FAN SH X, LIU G C, et al. Image distortions caused by rotational double prisms and their correction[J]. Acta Optica Sinica, 2015, 35(9): 0911003. (in Chinese). doi: 10.3788/AOS201535.0911003
|
[17] |
曾晨欣, 李加慧, 谭奋利, 等. 超轻小宽视场高分辨无人机机载相机光学系统设计[J]. 激光与光电子学进展,2023,60(5):0522004.
ZENG CH X, LI J H, TAN F L, et al. Optical design of an airborne light weight camera with wide field of view and high resolution[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0522004. (in Chinese).
|
[18] |
顾志远, 颜昌翔, 张军强, 等. 基于同心物镜结构的超大视场高分辨率空间目标监视望远镜[C]. 第二届空间目标与碎片监测、清理技术及应用学术研讨会论文集, 中国工程院信息与电子工程学部, 国家自然科学基金委员会, 中国光学工程学会, 2015.
GU ZH Y, YAN CH X, ZHANG J Q, et al. Space surveillance telescope with large field of view and high resolution based on monocentric lens[C]. 2015. (in Chinese) (查阅网上资料, 未找到本条文献母体文献和出版者英文信息, 请确认) .
|
[19] |
SON H S, MARKS D L, HAHN J, et al. Design of a spherical focal surface using close-packed relay optics[J]. Optics Express, 2011, 19(17): 16132-16138. doi: 10.1364/OE.19.016132
|
[20] |
SON H S, MARKS D L, HAHN J, et al. Design of a spherical focal surface using close-packed relay optics: erratum[J]. Optics Express, 2013, 21(22): 27284-27285. doi: 10.1364/OE.21.027284
|
[21] |
李闻先. 基于光纤传像元件的空间目标探测系统成像技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.
LI W X. Research on imaging technology of space target detection system based on relay image transmission of fiber optic transmission components[D]. Changchun: University of Chinese Academy of Sciences, 2022. (in Chinese).
|
[22] |
黄亚伟. 球面光纤束的传像性能研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
HUANG Y W. Research on image transmission performance of spherical fiber bundle[D]. Changchun: University of Chinese Academy of Sciences, 2021. (in Chinese).
|
[23] |
谢丹丹. 天基可见光探测系统指标的优化[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.
XIE D D. Optimization of the indicators of the space-based visible light detection system[D]. Changchun: University of Chinese Academy of Sciences, 2023. (in Chinese).
|
[24] |
朱琳, 吴双, 佟岐, 等. 面向空间探测与识别的目标光学特性分析[J]. 航天电子对抗,2022,38(3):13-16. doi: 10.3969/j.issn.1673-2421.2022.03.004
ZHU L, WU SH, TONG Q, et al. Analysis of target optical characteristics for space detection and recognition[J]. Aerospace Electronic Warfare, 2022, 38(3): 13-16. (in Chinese). doi: 10.3969/j.issn.1673-2421.2022.03.004
|