Turn off MathJax
Article Contents
MU Shuai-wei, WU Hong-bo, ZHANG Xin, MA Lin, YAN Lei, TAN Shuang-long. Design of optical system with wide field of view, broad spectral range for space target detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0198
Citation: MU Shuai-wei, WU Hong-bo, ZHANG Xin, MA Lin, YAN Lei, TAN Shuang-long. Design of optical system with wide field of view, broad spectral range for space target detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0198

Design of optical system with wide field of view, broad spectral range for space target detection

cstr: 32171.14.CO.2024-0198
Funds:  Supported by National Science Foundation of China (No.62475122)
More Information
  • To achieve wide-area detection of space targets, this study designs an optical system design with a broad spectrum range (400 nm−1000 nm), a large field of view (61°), a small F-number (1.38), and low distortion. This optical system is capable of detecting space targets with a magnitude of 6, enabling wide-area detection. Initially, a mapping between the radiation model of space target detection and the optical system parameters is established. The optical design is then theoretically analyzed using a reverse telephoto layout as the starting point. The design is optimized to balance and correct severe chromatic aberration resulting from the large field of view and wide spectral range, while improving enclosed energy and considering the roundness of scattered spots. The detection capability is verified through space optical simulation experiments. Results show that the optical system meets the wide-area detection requirements for space targets with a magnitude of 6. Finally, the physical detection capability of the optical system is experimentally verified. The results indicate that the optical system is capable of wide-area detection of space targets with a magnitude of 6. The overall design of the optical system is reasonable and compact, meeting the requirements of wide-area detection of space targets.

     

  • loading
  • [1]
    刘科, 何磊. “星链”潜在军事应用能力分析研究[J]. 战术导弹技术,2024(3):148-153.

    LIU K, HE L. Analysis and research on the potential military application capability of Starlink[J]. Tactical Missile Technology, 2024(3): 148-153. (in Chinese).
    [2]
    张煌, 杜雁芸. “星链”军事化发展及其对全球战略稳定性的影响[J]. 国际安全研究,2023,41(5):29-53,157-158.

    ZHANG H, DU Y Y. Militarization of Starlink and its impact on global strategic stability[J]. Journal of International Security Studies, 2023, 41(5): 29-53,157-158. (in Chinese).
    [3]
    黎璐玫, 刘伟骏, 俞越. 空间碎片现状与挑战[J]. 中国无线电,2023(8):33-36.

    LI L M, LIU W J, YU Y. Current situation and challenges of space debris[J]. China Radio, 2023(8): 33-36. (in Chinese).
    [4]
    YANG Y ZH, LI Y J, WANG J, et al. Design of detection optical system with large relative aperture[J]. Proceedings of SPIE, 2022, 12315: 1231515.
    [5]
    JIAO J C, WANG C, YU Y, et al. Lightweight visible light camera technology for weak space target detection[J]. Proceedings of SPIE, 2023, 12317: 123170I.
    [6]
    ZHANG G Y, FAN X W, MA Z X, et al. Optical design of space debris detection system with wide field of view[J]. Proceedings of SPIE, 2020, 11570: 1157004.
    [7]
    ZONG Y H, ZHUANG X X, ZHANG T CH, et al. Design of a wide field camera for detecting dim targets[J]. Proceedings of SPIE, 2022, 12065: 1206542. (查阅网上资料, 不确定本条文献标黄作者信息, 请确认) .
    [8]
    闫昊昱, 王虎, 薛要克, 等. 大视场红外星敏感器折反式光学系统设计[J]. 飞控与探测,2022,5(5):12-18.

    YAN H Y, WANG H, XUE Y K, et al. Design of a catadioptric system for infrared star sensor with wide field of view[J]. Flight Control & Detection, 2022, 5(5): 12-18. (in Chinese).
    [9]
    陈醒. 天基空间目标探测系统的光学设计与杂散光研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

    CHEN X. Optical system design and stray light research of a space-based detection camera[D]. Changchun: University of Chinese Academy of Sciences, 2018. (in Chinese).
    [10]
    宋菲君, 陈笑, 刘畅. 近代光学系统设计概论[M]. 北京: 科学出版社, 2019.

    SONG F J, CHEN X, LIU CH. Introduction to Modern Optical System Design[M]. Beijing: Science Press, 2019. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认) .
    [11]
    LU Y F, ZHOU Y, HEI M, et al. Theoretical and experimental determination of steering mechanism for Risley prism systems[J]. Applied Optics, 2013, 57(7): 1389-1398.
    [12]
    CURATU E O, CHEVRETTE P C, ST-GERMAIN D. Rotating-prism scanning system to equip an NFOV camera lens[J]. Proceedings of SPIE, 1999, 3779: 154-164. doi: 10.1117/12.368205
    [13]
    贵超. 旋转双棱镜超分辨率宽视场成像技术研究[D]. 绵阳: 西南科技大学, 2023.

    GUI CH. Rotating biprism super-resolution wide field of view imaging technology research[D]. Mianyang: Southwest University of Science and Technology, 2023. (in Chinese).
    [14]
    杨柠宇. 消色差旋转双光楔系统光学设计与研究[D]. 呼和浩特: 内蒙古大学, 2023.

    YANG N Y. Optical design and study of achromatic rotating dual-wedge prism system[D]. Hohhot: Inner Mongolia University, 2023. (in Chinese).
    [15]
    周远, 鲁亚飞, 黑沫, 等. 旋转双棱镜光束指向解析解[J]. 光学精密工程,2013,21(6):1373-1379. doi: 10.3788/OPE.20132106.1373

    ZHOU Y, LU Y F, HEI M, et al. Analytic solution of optical beam steering based on rotational double prisms[J]. Optics and Precision Engineering, 2013, 21(6): 1373-1379. (in Chinese). doi: 10.3788/OPE.20132106.1373
    [16]
    周远, 范世珣, 刘光灿, 等. 旋转双棱镜引起的成像畸变及其校正[J]. 光学学报,2015,35(9):0911003. doi: 10.3788/AOS201535.0911003

    ZHOU Y, FAN SH X, LIU G C, et al. Image distortions caused by rotational double prisms and their correction[J]. Acta Optica Sinica, 2015, 35(9): 0911003. (in Chinese). doi: 10.3788/AOS201535.0911003
    [17]
    曾晨欣, 李加慧, 谭奋利, 等. 超轻小宽视场高分辨无人机机载相机光学系统设计[J]. 激光与光电子学进展,2023,60(5):0522004.

    ZENG CH X, LI J H, TAN F L, et al. Optical design of an airborne light weight camera with wide field of view and high resolution[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0522004. (in Chinese).
    [18]
    顾志远, 颜昌翔, 张军强, 等. 基于同心物镜结构的超大视场高分辨率空间目标监视望远镜[C]. 第二届空间目标与碎片监测、清理技术及应用学术研讨会论文集, 中国工程院信息与电子工程学部, 国家自然科学基金委员会, 中国光学工程学会, 2015.

    GU ZH Y, YAN CH X, ZHANG J Q, et al. Space surveillance telescope with large field of view and high resolution based on monocentric lens[C]. 2015. (in Chinese) (查阅网上资料, 未找到本条文献母体文献和出版者英文信息, 请确认) .
    [19]
    SON H S, MARKS D L, HAHN J, et al. Design of a spherical focal surface using close-packed relay optics[J]. Optics Express, 2011, 19(17): 16132-16138. doi: 10.1364/OE.19.016132
    [20]
    SON H S, MARKS D L, HAHN J, et al. Design of a spherical focal surface using close-packed relay optics: erratum[J]. Optics Express, 2013, 21(22): 27284-27285. doi: 10.1364/OE.21.027284
    [21]
    李闻先. 基于光纤传像元件的空间目标探测系统成像技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    LI W X. Research on imaging technology of space target detection system based on relay image transmission of fiber optic transmission components[D]. Changchun: University of Chinese Academy of Sciences, 2022. (in Chinese).
    [22]
    黄亚伟. 球面光纤束的传像性能研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    HUANG Y W. Research on image transmission performance of spherical fiber bundle[D]. Changchun: University of Chinese Academy of Sciences, 2021. (in Chinese).
    [23]
    谢丹丹. 天基可见光探测系统指标的优化[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023.

    XIE D D. Optimization of the indicators of the space-based visible light detection system[D]. Changchun: University of Chinese Academy of Sciences, 2023. (in Chinese).
    [24]
    朱琳, 吴双, 佟岐, 等. 面向空间探测与识别的目标光学特性分析[J]. 航天电子对抗,2022,38(3):13-16. doi: 10.3969/j.issn.1673-2421.2022.03.004

    ZHU L, WU SH, TONG Q, et al. Analysis of target optical characteristics for space detection and recognition[J]. Aerospace Electronic Warfare, 2022, 38(3): 13-16. (in Chinese). doi: 10.3969/j.issn.1673-2421.2022.03.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(9)

    Article views(24) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return