Turn off MathJax
Article Contents
JIANG Hong-mei, HU Yuan, ZOU Hui-tian, HOU Zhen-min. Optimization design method for counter-rotating prisms atmospheric dispersion corrector[J]. Chinese Optics. doi: 10.37188/CO.2024-0204
Citation: JIANG Hong-mei, HU Yuan, ZOU Hui-tian, HOU Zhen-min. Optimization design method for counter-rotating prisms atmospheric dispersion corrector[J]. Chinese Optics. doi: 10.37188/CO.2024-0204

Optimization design method for counter-rotating prisms atmospheric dispersion corrector

cstr: 32171.14.CO.2024-0204
Funds:  Supported by Natural Science Foundation of Jilin Province of China (No. 20240101360JC)
More Information
  • The counter-rotating prisms Atmospheric Dispersion Corrector (ADC) has been widely used for the calibration of large-aperture astronomical telescopes. To achieve an optimal design method for the counter-rotating prism ADC, effectively compensate for dispersion, and suppress optical axis drift introduced by the ADC, this study establishes a vector model for ray tracing of the counter-rotating prism ADC based on traditional atmospheric dispersion compensation theory. The vector models of dispersion compensation and optical axis drift are then derived. Using this mathematical model, the impacts of ADCs with different parameters on the dispersion compensation, prism rotation angle, and optical axis drift are simulated and analyzed. The simulation results show that when compensating for the same atmospheric dispersion with different material combinations and bonding types, the rotation angle of the prism group remains relatively consistent, with differences increasing as the zenith angle increases. Choosing materials with similar refractive indices near the central wavelength reduces chromatic aberration in the ADC output light and improves dispersion compensation. When compensating for large dispersions at different zenith angles, the optical axis offset angle of the system decreases as the number of bonded surfaces increases. Specifically, each additional bonded surface can reduce the optical axis drift angle by one order of magnitude. In practical ADC design, dispersion can be effectively compensated, and optical axis drift can be suppressed by controlling the number of bonded surfaces and material selection.

     

  • loading
  • [1]
    谈昊. “南天光谱巡天望远镜”望远镜本体光学方案设计及性能分析[D]. 武汉: 华中科技大学, 2021: 25-27.

    TAN H. Design and analyze of the telescope of Southern Spectroscopic Survey Telescope project[D]. Wuhan: Huazhong University of Science & Technology, 2021: 25-27. (in Chinese).
    [2]
    孔思捷, 周进, 尧联群, 等. 基于多次收敛分割反卷积算法的大气色散补偿方法[J]. 半导体光电,2019,40(6):862-868.

    KONG S J, ZHOU J, YAO L Q, et al. Atmospheric dispersion compensation based on multiple convergence deconvolution algorithm[J]. Semiconductor Optoelectronics, 2019, 40(6): 862-868. (in Chinese).
    [3]
    明名, 吕天宇, 吴小霞, 等. 大气色散对4m望远镜成像分辨力的影响与校正[J]. 中国光学,2015,8(5):814-822. doi: 10.3788/co.20150805.0814

    MING M, LÜ T Y, WU X X, et al. Influence of atmospheric dispersion on image resolution of 4 m telescope and correction method[J]. Chinese Optics, 2015, 8(5): 814-822. (in Chinese). doi: 10.3788/co.20150805.0814
    [4]
    PHILLIPS A C, MILLER J, COWLEY D, et al. The Keck-I Cassegrain ADC[J]. Proceedings of SPIE, 2008, 7014: 701453. doi: 10.1117/12.789930
    [5]
    RAKICH A. A new type of atmospheric dispersion corrector suitable for wide-field high-resolution imaging and spectroscopy on large telescopes[J]. Applied Sciences, 2021, 11(14): 6261. doi: 10.3390/app11146261
    [6]
    SPANÒ P. A super-corrected atmospheric dispersion corrector[J]. Proceedings of SPIE, 2008, 7018: 70181G. doi: 10.1117/12.789161
    [7]
    EGNER S, IKEDA Y, WATANABE M, et al. Atmospheric dispersion correction for the Subaru AO system[J]. Proceedings of SPIE, 2010, 7736: 77364V. doi: 10.1117/12.856579
    [8]
    WEHBE B, CABRAL A, ÁVILA G. The development of an optical design tool for atmospheric dispersion correction[J]. Proceedings of SPIE, 2019, 11207: 112070P.
    [9]
    TAN H, MA D L. Recommended optical system design for the SSST[J]. Applied Optics, 2020, 59(11): 3508-3517. doi: 10.1364/AO.387948
    [10]
    周健文, 姚纳, 赵汗青, 等. 大气湍流下超振荡望远成像的理论研究[J]. 激光技术,2023,47(1):115-120. doi: 10.7510/jgjs.issn.1001-3806.2023.01.018
    [11]
    ZHOU J W, YAO N, ZHAO H Q, et al. Theoretical study of super-oscillation telescope imaging with atmospheric turbulence[J]. Laser Technology, 2023, 47(1): 115-120. (in Chinese) (查阅网上资料, 本条文献为第10条文献的英文翻译, 请确认) .
    [12]
    温婉莎. 宽视场光学成像光谱仪大气色散校正器光机结构与集成技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2023: 2-8.

    WEN W SH. Research on optical and mechanical structure and integration technology of atmospheric dispersion corrector for wide-field optical spectrometer[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2023: 2-8. (in Chinese).
    [13]
    吴之旭, 陈超, 姜鹏, 等. 南极大视场望远镜光学系统研究进展[J]. 极地研究,2024,36(1):84-98.

    WU ZH X, CHEN CH, JIANG P, et al. Progress of the Antarctic large field of view telescope[J]. Chinese Journal of Polar Research, 2024, 36(1): 84-98. (in Chinese).
    [14]
    毛红敏, 丁致雅, 杨燕燕, 等. 大气湍流对高分辨率遥感卫星的成像影响研究[J]. 中国光学(中英文),2024,17(1):167-177. doi: 10.37188/CO.2023-0083

    MAO H M, DING ZH Y, YANG Y Y, et al. Effect of atmospheric turbulence on imaging quality of high-resolution remote sensing satellites[J]. Chinese Optics, 2024, 17(1): 167-177. (in Chinese). doi: 10.37188/CO.2023-0083
    [15]
    SHIKHOVTSEV A Y. Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site[J]. Publications of the Astronomical Society of Japan, 2024, 76(3): 538-549. doi: 10.1093/pasj/psae031
    [16]
    安其昌, 吴小霞, 李洪文, 等. 基于曲率传感的主焦巡天望远镜集成检测方法[J]. 中国光学(中英文),2023,16(3):535-541. doi: 10.37188/CO.2023-0010

    AN Q CH, WU X X, LI H W, et al. Assembling and test method for main focus survey telescope based on curvature sensing[J]. Chinese Optics, 2023, 16(3): 535-541. (in Chinese). doi: 10.37188/CO.2023-0010
    [17]
    谢云辉. 激光打孔光楔扫描光学系统的设计与研究[D]. 武汉: 华中科技大学, 2011: 28-30.

    XIE Y H. Design and research of optical wedge scanning system for laser drilling[D]. Wuhan: Huazhong University of Science & Technology, 2011: 28-30. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article views(28) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return