Citation: | DI Jia-yu, CUI Yan, WU Rui-xiang, LU Bin. High-performance photodetectors based on zero-dimensional lead-free perovskite thin films[J]. Chinese Optics. doi: 10.37188/CO.2024-0214 |
Organic-inorganic hybrid lead-free perovskites have garnered significant attention due to their non-biotoxicity and environmental sustainability. Among these materials, MA3Sb2I9, with its stable zero-dimensional (0D) structure and lead-free nature, shows great promise for stable and efficient photodetection applications. In this study, we employ a MACl post-treatment to enhance the quality of MA3Sb2I9 perovskite thin films fabricated through antisolvent processing. This treatment facilitated the formation of Cl-Sb bond interactions between MACl and the perovskite thin films, effectively passivating the I− vacancies and grain boundary defects on the MA3Sb2I9 thin-film surface. This process not only improve the surface morphology and crystallinity of the thin film but also reduced the defect states density of the surface, thereby enhancing carrier extraction and transport efficiency. Consequently, the sensitivity of self-powered photodetectors based on the optimized thin-film preparation increased from 3.89 × 107 Jones to 5.72 × 108 Jones, representing an improvement by one order of magnitude. Furthermore, the rise and fall times were shortened from 37/76 ms to 31/37 ms, respectively, indicating an enhancement in the response speed of the devices.
[1] |
DONG Q F, FANG Y J, SHAO Y CH, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. doi: 10.1126/science.aaa5760
|
[2] |
GREEN M A, HO-BAILLIE A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. doi: 10.1038/nphoton.2014.134
|
[3] |
LIU J, LIU F J, LIU H N, et al. Direct growth of perovskite crystals on metallic electrodes for high-performance electronic and optoelectronic devices[J]. Small, 2020, 16(3): 1906185. doi: 10.1002/smll.201906185
|
[4] |
SUN J, DING L M. Linearly polarization-sensitive perovskite photodetectors[J]. Nano-Micro Letters, 2023, 15(1): 90. doi: 10.1007/s40820-023-01048-y
|
[5] |
SERVICE R F. Perovskite LEDs begin to shine[J]. Science, 2019, 364(6444): 918-918. doi: 10.1126/science.364.6444.918
|
[6] |
QIU X C, XIA J N, LIU Y, et al. Ambient-stable 2D Dion-Jacobson phase tin halide perovskite field-effect transistors with mobility over 1.6 Cm2 V-1s-1[J]. Advanced Materials, 2023, 35(44): 2305648. doi: 10.1002/adma.202305648
|
[7] |
TURREN-CRUZ S H, SALIBA M, MAYER M T, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells[J]. Energy & Environmental Science, 2018, 11(1): 78-86.
|
[8] |
MENG L, SUN CH K, WANG R, et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%[J]. Journal of the American Chemical Society, 2018, 140(49): 17255-17262. doi: 10.1021/jacs.8b10520
|
[9] |
ZHAO H, WANG SH R, SUN M N, et al. Enhanced stability and optoelectronic properties of MAPbI3 films by a cationic surface-active agent for perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(23): 10825-10834. doi: 10.1039/C8TA00457A
|
[10] |
HE J, SU J, DI J Y, et al. Surface reconstruction strategy improves the all-inorganic CsPbIBr2 based perovskite solar cells and photodetectors performance[J]. Nano Energy, 2022, 94: 106960. doi: 10.1016/j.nanoen.2022.106960
|
[11] |
冯晓娜, 李丹, 梁春军. 有机卤化物盐对钙钛矿太阳电池器件性能的影响[J]. 半导体光电,2020,41(5):644-647.
FENG X N, LI D, LIANG CH J. Effects of organic halide salt on the performance of perovskite solar cells[J]. Semiconductor Optoelectronics, 2020, 41(5): 644-647. (in Chinese).
|
[12] |
LIN H R, ZHOU CH K, TIAN Y, et al. Low-dimensional organometal halide perovskites[J]. ACS Energy Letters, 2018, 3(1): 54-62. doi: 10.1021/acsenergylett.7b00926
|
[13] |
ZHANG Y, LI CH Y, ZHAO H Y, et al. Synchronized crystallization in tin-lead perovskite solar cells[J]. Nature Communications, 2024, 15(1): 6887. doi: 10.1038/s41467-024-51361-2
|
[14] |
SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications[J]. Journal of the American Chemical Society, 2016, 138(7): 2138-2141. doi: 10.1021/jacs.5b13294
|
[15] |
YANG B, LI Y J, TANG Y X, et al. Constructing sensitive and fast lead-free single-crystalline perovskite photodetectors[J]. The Journal of Physical Chemistry Letters, 2018, 9(11): 3087-3092. doi: 10.1021/acs.jpclett.8b01116
|
[16] |
HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494. doi: 10.1038/nphoton.2014.82
|
[17] |
NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy & Environmental Science, 2014, 7(9): 3061-3068.
|
[18] |
KIM M, KIM G H, LEE T K, et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule, 2019, 3(9): 2179-2192. doi: 10.1016/j.joule.2019.06.014
|
[19] |
LIANG Q J, LIU J G, CHENG ZH K, et al. Enhancing the crystallization and optimizing the orientation of perovskite films via controlling nucleation dynamics[J]. Journal of Materials Chemistry A, 2016, 4(1): 223-232. doi: 10.1039/C5TA08015K
|
[20] |
MATEEN M, ARAIN Z, YANG Y, et al. MACl-induced intermediate engineering for high-performance mixed-cation perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10535-10543.
|
[21] |
ZHU W D, DENG M Y, ZHANG Z Y, et al. Intermediate phase halide exchange strategy toward a high-quality, thick CsPbBr3 film for optoelectronic applications[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22543-22549.
|