Citation: | YIN Jian-xiong, WANG Jun, WANG Hao-xing, WAN Shun, LIU Jia, JIA Ping-gang. Silicon MEMS fiber-optic Fabry Perot pressure sensor for shock wave measurements[J]. Chinese Optics. doi: 10.37188/CO.2025-0010 |
This paper proposes a fiber-optic Fabry-Perot pressure sensor based on microelectromechanical systems (MEMS) technology for the measurement of transient pressures, including shock waves. The sensitive unit is composed etched silicon wafers and BF33 glass wafers by anodic bonding, and the adhesive-free integration of the optical fiber and the sensitive unit is realized by laser fusion bonding technology. A signal demodulation experiment platform was constructed to comprehensively evaluate the pressure sensing characteristics of the sensors in static and dynamic pressure environments. The experimental findings demonstrate that the sensor exhibits a satisfactory linear response within the pressure range of 0−10 MPa, with a full-scale non-linear error of 0.41% and a hysteresis of 0.37%. Furthermore, the sensor demonstrated a rise time of 8.5 μs during dynamic pressure measurements. The sensor has the advantages of anti-electromagnetic interference, high consistency, low cost, and has a theoretical resonant frequency of 1.39 MHz, demonstrating the prospect of its wide application for dynamic pressure measurement in harsh environments such as explosion fields.
[1] |
轩春青, 轩志伟, 赖富文. 压力传感器测试系统的动态校准及特性分析[J]. 传感技术学报,2015,28(7):982-986. doi: 10.3969/j.issn.1004-1699.2015.07.007
XUAN CH Q, XUAN ZH W, LAI F W. The dynamic calibration of pressure sensor test system and sensitivity analysis[J]. Chinese Journal of Sensors and Actuators, 2015, 28(7): 982-986. (in Chinese). doi: 10.3969/j.issn.1004-1699.2015.07.007
|
[2] |
刘东来, 王伟魁, 李文博, 等. 冲击波超压传感器研究现状[J]. 遥测遥控,2019,40(5):7-15. doi: 10.3969/j.issn.2095-1000.2019.05.002
LIU D L, WANG W K, LI W B, et al. Research status of shock wave overpressure sensor[J]. Journal of Telemetry, Tracking and Command, 2019, 40(5): 7-15. (in Chinese). doi: 10.3969/j.issn.2095-1000.2019.05.002
|
[3] |
ZHANG Y J, PENG P, LIN T, et al. Research on the shock wave overpressure peak measurement method based on equilateral ternary array[J]. Sensors, 2024, 24(6): 1860. doi: 10.3390/s24061860
|
[4] |
施宇成, 孔德仁, 徐春冬, 等. 爆炸场冲击波压力测量及其传感器技术现状分析[J]. 测控技术,2022,41(11):1-10,34.
SHI Y CH, KONG D R, XU CH D, et al. Status analysis of shock wave pressure measurement and sensor technology in explosion field[J]. Measurement & Control Technology, 2022, 41(11): 1-10,34. (in Chinese).
|
[5] |
POEGGEL S, TOSI D, DURAIBABU D, et al. Optical fibre pressure sensors in medical applications[J]. Sensors, 2015, 15(7): 17115-17148. doi: 10.3390/s150717115
|
[6] |
RORIZ P, SILVA S, FRAZÃO O, et al. Optical fiber temperature sensors and their biomedical applications[J]. Sensors, 2020, 20(7): 2113. doi: 10.3390/s20072113
|
[7] |
付雨薇, 王睿楠, 唐文婷, 等. 用于高压测量的MEMS硅-玻光纤FP压力传感器[J]. 中国光学(中英文),2024,17(4):771-779.
FU Y W, WANG R N, TANG W T, et al. MEMS silicon-glass fiber-optic FP pressure sensor for high-pressure measurements[J]. Chinese Optics, 2024, 17(4): 771-779. (in Chinese).
|
[8] |
WATSON S, MACPHERSON W N, BARTON J S, et al. Investigation of shock waves in explosive blasts using fibre optic pressure sensors[J]. Measurement Science and Technology, 2006, 17(6): 1337-1342. doi: 10.1088/0957-0233/17/6/008
|
[9] |
PARKES W, DJAKOV V, BARTON J S, et al. Design and fabrication of dielectric diaphragm pressure sensors for applications to shock wave measurement in air[J]. Journal of Micromechanics and Microengineering, 2008, 17(7): 1334-1342.
|
[10] |
WU N, ZOU X T, TIAN Y, et al. An ultra-fast fiber optic pressure sensor for blast event measurements[J]. Measurement Science and Technology, 2012, 23(5): 055102. doi: 10.1088/0957-0233/23/5/055102
|
[11] |
陈显, 余尚江, 周会娟, 等. 一种F-P光纤爆炸压力传感器设计[J]. 传感器与微系统,2018,37(2):99-101,105.
CHEN X, YU SH J, ZHOU H J, et al. Design of a F-P optical fiber explosion pressure sensor[J]. Transducer and Microsystem Technologies, 2018, 37(2): 99-101,105. (in Chinese).
|
[12] |
WANG ZH, WEN G R, WU Z T, et al. Fiber optic method for obtaining the peak reflected pressure of shock waves[J]. Optics Express, 2018, 26(12): 15199-15210. doi: 10.1364/OE.26.015199
|
[13] |
CHU CH L, WANG J J, QIU J Y. Miniature high-frequency response, high-pressure-range dynamic pressure sensor based on all-silica optical fiber Fabry-Perot cavity[J]. IEEE Sensors Journal, 2021, 21(12): 13296-13304. doi: 10.1109/JSEN.2021.3068456
|
[14] |
ZELAN M, ARRHÉN F, JARLEMARK P, et al. Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations[J]. Metrologia, 2015, 52(1): 48-53. doi: 10.1088/0026-1394/52/1/48
|
[15] |
LIU Y Y, JING ZH G, LIU Q, et al. Differential-pressure fiber-optic airflow sensor for wind tunnel testing[J]. Optics Express, 2020, 28(17): 25101-25113. doi: 10.1364/OE.401677
|
[16] |
DI GIOVANNI M. Flat and Corrugated Diaphragm Design Handbook[M]. New York: Routledge, 2017.
|
[17] |
李加顺, 贾平岗, 王军, 等. 基于石英MEMS技术的光纤法布里-珀罗高温压力传感器(英文)[J]. 光子学报,2022,51(6):0606005. doi: 10.3788/gzxb20225106.0606005
LI J SH, JIA P G, WANG J, et al. Silica-MEMS-based Fiber-optic Fabry-Perot pressure sensor for high-temperature applications[J]. Acta Photonica Sinica, 2022, 51(6): 0606005. doi: 10.3788/gzxb20225106.0606005
|
[18] |
李文豪, 贾平岗, 王军, 等. 基于硅MEMS技术的高灵敏度微型光纤法布里-珀罗压力传感器[J]. 光子学报,2024,53(5):0553110. doi: 10.3788/gzxb20245305.0553110
LI W H, JIA P G, WANG J, et al. High sensitivity micro fiber Fabry Perot pressure sensor based on silicon MEMS technology[J]. Acta Photonica Sinica, 2024, 53(5): 0553110. (in Chinese). doi: 10.3788/gzxb20245305.0553110
|
[19] |
任乾钰, 贾平岗, 钱江, 等. 多腔型光纤法布里-珀罗传感器三波长动态解调技术[J]. 光子学报,2022,51(9):0906005. doi: 10.3788/gzxb20225109.0906005
REN Q Y, JIA P G, QIAN J, et al. Three-wavelength dynamic demodulation technique for multi-cavity fiber Fabry-Perot sensor[J]. Acta Photonica Sinica, 2022, 51(9): 0906005. (in Chinese). doi: 10.3788/gzxb20225109.0906005
|
[20] |
杨凡, 孔德仁, 姜波, 等. 基于激波管校准的冲击波压力传感器动态特性研究[J]. 南京理工大学学报,2017,41(3):330-336.
YANG F, KONG D R, JIANG B, et al. Dynamic characteristic of shock wave pressure sensor based on shock tube calibration[J]. Journal of Nanjing University of Science and Technology, 2017, 41(3): 330-336. (in Chinese).
|
[21] |
田锐, 魏刚, 张涵哲, 等. 基于空气激波管的GFRP层合板抗爆性能研究[J]. 复合材料科学与工程,2023(3):68-75.
TIAN R, WEI G, ZHANG H ZH, et al. Study of the blast resistance of GFRP laminates based on air shock tube[J]. Composites Science and Engineering, 2023(3): 68-75. (in Chinese).
|