Citation: | QI Yi, GAO Xue-rong, WANG Shao-xin, LI Pan, SHEN Qi-hao, QI Ke-qi, LUO Zi-ren, LIU He-shan. Application of convolutional fitting in Fabry-Perot (F-P) resonator linewidth measurement[J]. Chinese Optics, 2025, 18(3): 672-681. doi: 10.37188/CO.2025-0024 |
To address the measurement errors introduced by laser linewidth in the traditional swept-frequency methods, a signal analysis approach based on convolution fitting is proposed, leveraging the convolutional characteristics of Guassian-shaped laser spectrum and Lorentzian-type Fabry-Perot (F-P) cavity. An swept-frequency optical fiber experimental platform is constructed to verify the performance of the two F-P cavities (one is custom-built (Cavity 1) and another is commercial (Cavity 2)) . Firstly, the impact of laser linewidth on the signal profile is quantified through simulations, and the main process of the fitting algorithm is introduced. Secondly, the spectrum of the incident laser is measured via beat-frequency analysis. The experimental results indicated that the spectrum exhibited a Gaussian shape with a linewidth of (11.59 ± 1.23) kHz. Subsequently, the frequency modulation error of the swept-frequency platform is evaluated. Linewidth measurements are conducted on the cavity 1 and cavity 2 using the swept-frequency method. For Cavity 1, the results of Lorentzian fitting and convolutional fitting are (204.1 ± 11.2) kHz and (203.9 ± 11.2) kHz, respectively, showing no significant difference. For Cavity 2, which had a calibrated linewidth of 4.17 kHz, the result of Lorentzian fitting is (8.97 ± 0.42) kHz, while the result of convolutional fitting is (4.42 ± 0.50) kHz. The experimental results demonstrate that when the laser linewidth is comparable to the cavity’s linewidth, this method can accurately measure the true linewidth of the cavity. When the laser linewidth (11.59 kHz) is significantly smaller than the cavity’s linewidth (204.1 kHz), the results obtained using this method are similar to those from the Lorentzian fitting approach. This work broadens the range of options for selecting linewidth measurement equipment for narrow-linewidth Fabry-Pérot (F-P) cavities.
[1] |
SAVCHENKOV A A, MATSKO A B, ILCHENKO V S, et al. Optical resonators with ten million finesse[J]. Optics Express, 2007, 15(11): 6768-6773. doi: 10.1364/OE.15.006768
|
[2] |
曹开明. 基于PDH技术的激光稳频控制研究与实现[D]. 南昌: 南昌大学, 2024.
CAO K M. Research and implementation of laser frequency stabilization control based on the Pound-Drever-Hall technique[D]. Nanchang: Nanchang University, 2024. (in Chinese).
|
[3] |
LIANG W, LIU Y F. Compact sub-hertz linewidth laser enabled by self-injection lock to a sub-milliliter FP cavity[J]. Optics Letters, 2023, 48(5): 1323-1326. doi: 10.1364/OL.481552
|
[4] |
徐欣, 谈宜东, 穆衡霖, 等. 空间引力波探测中的激光干涉多自由度测量技术[J]. 激光与光电子学进展,2023,60(3):0312006.
XU X, TAN Y D, MU H L, et al. Laser interferometric multi-degree-of-freedom measurement technology in space gravitational-wave detection[J]. Laser & Optoelectronics Progress, 2023, 60(3): 0312006. (in Chinese).
|
[5] |
段会宗, 骆颖欣, 张静怡, 等. 星间激光干涉测量技术[J]. 中山大学学报(自然科学版),2021,60(1-2):162-177.
DUAN H Z, LUO Y X, ZHANG J Y, et al. Inter-satellite laser interferometry[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 162-177. (in Chinese).
|
[6] |
王娟, 齐克奇, 王少鑫, 等. 面向空间引力波探测的激光干涉技术研究进展及展望[J]. 中国科学: 物理学 力学 天文学, 2024, 54(7): 109-127.
WANG J, QI K Q, WANG SH X, et al. Advance and prospect in the study of laser interferometry technology for space gravitational wave detection[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2024, 54(7): 109-127. (in Chinese).
|
[7] |
LU X Y, LIU X, TIAN Q L, et al. Finesse measurement for high-power optical enhancement cavity[J]. Chinese Physics B, 2023, 33(1): 014205. doi: 10.1088/1674-1056/acd8ad
|
[8] |
杨捷. 光腔衰荡法腔损耗测量技术研究[D]. 西安: 西安工业大学, 2014.
YANG J. Cavity ring-down cavity loss measurement method research[D]. Xi’an: Xi’an Technological University, 2014. (in Chinese).
|
[9] |
UEHARA N, UEDA K. Accurate measurement of ultralow loss in a high-finesse Fabry-Perot interferometer using the frequency response functions[J]. Applied Physics B, 1995, 61(1): 9-15. doi: 10.1007/BF01090966
|
[10] |
KUNTZ K B, WHEATLEY T A, SONG H B, et al. Ultra-wide frequency response measurement of an optical system with a DC photo-detector[J]. Optics Express, 2017, 25(2): 573-586. doi: 10.1364/OE.25.000573
|
[11] |
LOCKE C R, STUART D, IVANOV E N, et al. A simple technique for accurate and complete characterisation of a Fabry-Perot cavity[J]. Optics Express, 2009, 17(24): 21935-21943. doi: 10.1364/OE.17.021935
|
[12] |
CHEN M, MENG ZH, WANG J F, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808. doi: 10.1364/OE.23.006803
|
[13] |
卢飞飞, 白建东, 侯晓凯, 等. 置于超高真空环境且控温的超稳光学腔的腔线宽及零膨胀温度点测定[J]. 量子光学学报,2022,28(4):288-295.
LU F F, BAI J D, HOU X K, et al. Measurement of the cavity linewidth and the zero-expansion temperature of a temperature-stabilized ultra-stable optical cavity placed in ultra-high vacuum chamber[J]. Journal of Quantum Optics, 2022, 28(4): 288-295. (in Chinese).
|
[14] |
刘军, 陈帛雄, 许冠军, 等. 高精细度光学参考腔的自主化研制[J]. 物理学报,2017,66(8):080601. doi: 10.7498/aps.66.080601
LIU J, CHEN B X, XU G J, et al. Self-reliance and independently developed high-finesse spherical ultrastable optical reference cavity[J]. Acta Physica Sinica, 2017, 66(8): 080601. (in Chinese). doi: 10.7498/aps.66.080601
|
[15] |
HUN X N, BAI ZH X, WANG J P, et al. Convolution error reduction for a Fabry–Pérot-based linewidth measurement: a theoretical and experimental study[J]. Photonics, 2022, 9(12): 1004. doi: 10.3390/photonics9121004
|
[16] |
彭雪峰, 马秀荣, 张双根, 等. 两台独立激光器拍频线型对线宽测量的影响[J]. 中国激光,2011,38(4):0408002. doi: 10.3788/CJL201138.0408002
PENG X F, MA X R, ZHANG SH G, et al. Effect of beat frequency linetype on measurement of laser linewidth using two independent lasers[J]. Chinese Journal of Lasers, 2011, 38(4): 0408002. (in Chinese). doi: 10.3788/CJL201138.0408002
|