Citation: | LI Hong-li, LIU Xin-yue, DU Bo-jun, CAO Jing-tai, ZHANG Heng. Improved simulated annealing algorithm for wavefront correction in free-space optical communication[J]. Chinese Optics. doi: 10.37188/CO.2025-0028 |
To compensate for atmospheric turbulence-induced wavefront distortion in coherent free-space optical communication, we develop an adaptive optical system based on the improved simulated annealing algorithm. The system seeks to optimize mixing efficiency and reduce the bit error rate, ultimately enhancing overall system performance. First, we describe the structure of a coherent optical communication system without a wavefront adaptive optics component, focusing on key parameters such as mixing efficiency and bit error rate. Next, the paper implements a detailed explanation of the working principles of the improved simulated annealing algorithm and its application in adaptive optical systems. To validate the proposed algorithm's effectiveness, numerical simulations are performed and compared against traditional algorithms. Finally, real-world data is collected from an experimental platform to further assess the algorithm's performance. Experimental results demonstrate that, in comparison to the standard simulated annealing algorithm, the improved simulated annealing algorithm reduces the iteration count by 50%, decreases the bit error rate to 10−9, and increases the mixing efficiency to 0.9. Overall, the improved simulated annealing algorithm effectively reduces the iteration count in traditional adaptive optical systems, enhances wavefront correction accuracy, and satisfies communication system requirements.
[1] |
刘智, 蒋青芳, 刘树通, 等. 空间激光通信组网技术与应用研究进展[J]. 中国光学(中英文),2025,18(3):429-451. doi: 10.37188/CO.2023-0140
LIU ZH, JIANG Q F, LIU SH T, et al. Research progress of space laser communication networking technology[J]. Chinese Optics, 2025, 18(3): 429-451. (in Chinese). doi: 10.37188/CO.2023-0140
|
[2] |
LARSSON R, SCHRÖDER J, KARLSSON M, et al. Coherent combining of low-power optical signals based on optically amplified error feedback[J]. Optics Express, 2022, 30(11): 19441-19455. doi: 10.1364/OE.456188
|
[3] |
张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182
ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese). doi: 10.37188/CO.2021-0182
|
[4] |
PLATT B C, SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5): S573-S577.
|
[5] |
ZHANG SH, WANG R, WANG Y K, et al. Extending the detection and correction abilities of an adaptive optics system for free-space optical communication[J]. Optics Communications, 2021, 482: 126571. doi: 10.1016/j.optcom.2020.126571
|
[6] |
YANG H ZH, LI X Y. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor[J]. Optics & Laser Technology, 2011, 43(3): 630-635.
|
[7] |
CHE D B, LI Y Y, WU Y H, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953
|
[8] |
LIU W, MA X Y, JIN D R, et al. Residual network-based aberration correction in a sensor-less adaptive optics system[J]. Optics Communications, 2023, 545: 129707. doi: 10.1016/j.optcom.2023.129707
|
[9] |
KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
|
[10] |
MORALES-CASTAÑEDA B, ZALDÍVAR D, CUEVAS E, et al. An improved Simulated Annealing algorithm based on ancient metallurgy techniques[J]. Applied Soft Computing, 2019, 84: 105761. doi: 10.1016/j.asoc.2019.105761
|
[11] |
戴正爽. 自适应光学技术在大气激光通信系统中的应用研究[D]. 长春: 长春理工大学, 2021.
DAI ZH SH. Research of adaptive optics technique in atmospheric optical communications[D]. Changchun: Changchun University of Science and Technology, 2021. (in Chinese).
|
[12] |
CAO J T, ZHAO X H, LIU W, et al. Performance analysis of a coherent free space optical communication system based on experiment[J]. Optics Express, 2017, 25(13): 15299-15312. doi: 10.1364/OE.25.015299
|
[13] |
LIU W, YAO K N, HUANG D N, et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 2016, 24(12): 13288-13302. doi: 10.1364/OE.24.013288
|
[14] |
METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092. doi: 10.1063/1.1699114
|
[15] |
LIU C, CHEN M, CHEN SH Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21-24. doi: 10.1016/j.optcom.2015.10.033
|
[16] |
ZERNIKE F. Inflection theory of the cutting method and its improved form, the phase contrast method[J]. Physica, 1934, 1: 689-704. doi: 10.1016/S0031-8914(34)80259-5
|
[17] |
NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
|
[18] |
RODDIER N A. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering, 1990, 29(10): 1174-1180. doi: 10.1117/12.55712
|
[19] |
YANG H ZH, LI X Y, GONG CH L, et al. Restoration of turbulence-degraded extended object using the stochastic parallel gradient descent algorithm: numerical simulation[J]. Optics Express, 2009, 17(5): 3052-3062. doi: 10.1364/OE.17.003052
|
[20] |
张恒. 相干自由空间光通信无波前传感自适应光学关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.
ZHANG H. Research on key technologies of sensor-less adaptive optics for coherent free-space optical communication[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences), 2022. (in Chinese).
|
[21] |
LIU W, JIN D R, SHI W X, et al. Performance analysis of coherent optical communication based on hybrid algorithm[J]. Optics & Laser Technology, 2022, 149: 107878.
|
[22] |
ZHANG H, XU L, GUO Y F, et al. Application of AdamSPGD algorithm to sensor-less adaptive optics in coherent free-space optical communication system[J]. Optics Express, 2022, 30(5): 7477-7490. doi: 10.1364/OE.451350
|
[23] |
CUI S Y, ZHAO X H, HE X, et al. A quick hybrid atmospheric-interference compensation method in a WFS-less free-space optical communication system[J]. Current Optics and Photonics, 2018, 2(6): 612-622.
|
[24] |
ZHANG X Y, CAO ZH L, YANG CH L, et al. Improved bandwidth of open loop liquid crystal adaptive optics systems with a proportional-derivative controller[J]. Optics Express, 2019, 27(8): 11651-11660. doi: 10.1364/OE.27.011651
|