Turn off MathJax
Article Contents
LI Dongfeng, LI Ruyi, YANG Chunwang, ZHOU Jun, LU Shouxiang. Clarify the problem of the beam deviation angle formula of a Rochon Prism in classical literatures[J]. Chinese Optics. doi: 10.37188/CO.2025-0036
Citation: LI Dongfeng, LI Ruyi, YANG Chunwang, ZHOU Jun, LU Shouxiang. Clarify the problem of the beam deviation angle formula of a Rochon Prism in classical literatures[J]. Chinese Optics. doi: 10.37188/CO.2025-0036

Clarify the problem of the beam deviation angle formula of a Rochon Prism in classical literatures

cstr: 32171.14.CO.2025-0036
Funds:  This paper is supported by the Science and Technology Program Project of the Ministry of Public Security, “Research on Intelligent Recognition Technology and Equipment for Non-contact Rapid Detection of Explosives Based on Laser Thermal Effects” (No. 2022ZB12).
More Information
  • During the research and development process of the scientific research project, it was found that the beam deviation angle formula of a Rochon Prism in classical optical literature (for negative crystals) was incorrect. Therefore, an accurate expression for the beam deviation angle of a Rochon Prism was derived (distributed for negative and positive crystals), and the problem of design in the optical systems containing a Rochon Prism in the scientific research projects was solved. In response to the problem of small angles between the output two beams of light in general a Rochon Prism products, the expressions for the deviation angles of a Rochon Prism composed of negative and positive crystals were analyzed and derived. In addition, the deviation angles of a Rochon Prism composed of different crystal materials were analyzed and the expression was derived. By calculating and comparing with actual data, it is known that the beam deviation angle of a Rochon Prism made of different crystal materials is significantly higher than that of a Rochon Prism made of the same crystal material. For applications in the ultraviolet band, provide a specific design example of a large beam deviation angle for a Rochon Prism composed of heterogeneous crystal materials. This type of a Rochon Prism is composed of heterogeneous crystal materials, and according to the appropriate crystal arrangement order, a relatively large beam deviation angle can be obtained under the limitation of reasonable crystal thickness, which is obviously beneficial for the structural design of the polarization instruments and equipments.

     

  • loading
  • [1]
    朱化凤, 南玉杰, 云茂金, 等. 双沃拉斯顿棱镜光强分束比精确分析[J]. 光学学报,2012,32(6):0623002. doi: 10.3788/AOS201232.0623002

    ZHU H F, NAN Y J, YUN M J, et al. Precise analysis of the intensity splitting ratio of double wollaston prism[J]. Acta Optica Sinica, 2012, 32(6): 0623002. (in Chinese). doi: 10.3788/AOS201232.0623002
    [2]
    史萌, 吴福全. 双向分束角对称的偏光分束镜设计与性能分析[J]. 光子学报,2006,35(3):439-442.

    SHI M, WU F Q. The principle design and performance analysis of two-way symmetric splitting angle beam splitting prism[J]. Acta Photonica Sinica, 2006, 35(3): 439-442. (in Chinese).
    [3]
    薛林, 吴福全, 蒋琳琳. Wollaston棱镜对发散光束的分束特性分析[J]. 激光技术,2011,35(6):833-836.

    XUE L, WU F Q, JIANG L L. Effect of Wollaston prism on splitting properties of divergent beam[J]. Laser Technology, 2011, 35(6): 833-836. (in Chinese).
    [4]
    蔡燕民, 王向朝, 黄惠杰. 用于ArF光刻机偏振照明系统的沃拉斯顿棱镜的设计[J]. 中国激光,2014,41(6):0616002. doi: 10.3788/CJL201441.0616002

    CAI Y M, WANG X ZH, HUANG H J. Design of Wollaston prism used for polarization illumination system in ArF lithography tool[J]. Chinese Journal of Lasers, 2014, 41(6): 0616002. (in Chinese). doi: 10.3788/CJL201441.0616002
    [5]
    罗云瀚, 王芳, 葛菁华, 等. 基于洛匈棱镜的偏振度测量与空间退偏度分析方法研究[J]. 光子学报,2014,43(9):0912002. doi: 10.3788/gzxb20144309.0912002

    LUO Y H, WANG F, GE J H, et al. Simultaneous measurement of the degree of polarization and spatial analysis of depolarization based on a Rochon prism[J]. Acta Photonica Sinica, 2014, 43(9): 0912002. (in Chinese). doi: 10.3788/gzxb20144309.0912002
    [6]
    侯影, 石广立, 冯彤, 等. 洛匈棱镜分束角的光谱效应及入射角效应[J]. 曲阜师范大学学报(自然科学版),2012,38(2):73-76.

    HOU Y, SHI G L, FENG T, et al. The spectral and the incident angle’s effections of the los Austro-Hungarian prism’s splitting angle[J]. Journal of Qufu Normal University (Natural Science), 2012, 38(2): 73-76. (in Chinese).
    [7]
    陈西园, 单明. 洛匈棱镜的正反向特性[J]. 光学技术,2006,32(2):280-283. doi: 10.3321/j.issn:1002-1582.2006.02.017

    CHEN X Y, SHAN M. Characteristics of the Rochan prism in forward-use and backward-use[J]. Optical Technique, 2006, 32(2): 280-283. (in Chinese). doi: 10.3321/j.issn:1002-1582.2006.02.017
    [8]
    吴许强. 利用惠更斯原理作图解释罗雄棱镜的工作原理[J]. 合肥师范学院学报,2023,41(3):59-62. (查阅网上资料, 未找到对应的英文翻译, 请确认并补充).
    [9]
    STEINRNETZ D L, PHILLIPS W G, WIRICK M, et al. A polarizer for the vacuum ultraviolet[J]. Applied Optics, 1967, 6(6): 1001-1004. doi: 10.1364/AO.6.001001
    [10]
    廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003: 206-207.

    LIAO Y B. Polarization Optics[M]. Beijing: Science Press, 2003: 206-207. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [11]
    李景镇. 光学手册[M]. 西安: 陕西科学技术出版社, 1986: 526-527.

    LI J ZH. Optical Handbook[M]. Xi'an: Shaanxi Science and Technology Press, 1986: 526-527. (in Chinese) (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [12]
    LV M B, WANG P. Ray tracing in Rochon prisms with absorption[J]. Optics Express, 2017, 25(13): 14676-14690. doi: 10.1364/OE.25.014676
    [13]
    WANG B, DONG F L, FENG H, et al. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1660-1664. doi: 10.1021/acsphotonics.7b01191
    [14]
    WANG X, GAO Z, GAO C J, et al. Digital shearing speckle pattern interferometry based on Rochon prism and its application[J]. Applied Sciences, 2019, 9(12): 2554. doi: 10.3390/app9122554
    [15]
    KHALID A U R, ULLAH N, HAN Y, et al. Metasurface based spin-selective wollaston-and-Rochon-prism-like circularly polarized beam splitter[J]. Advanced Theory and Simulations, 2023, 6(1): 2200574. doi: 10.1002/adts.202200574
    [16]
    张郁文, 刘丙才, 王红军, 等. 同步相移横向剪切干涉中偏振器件的误差建模[J]. 中国光学(中英文),2024,17(3):640-647. doi: 10.37188/CO.2023-0152

    ZHANG Y W, LIU B C, WANG H J, et al. Error modeling of polarization devices in simultaneous phase-shifted lateral shearing interferometry[J]. Chinese Optics, 2024, 17(3): 640-647. (in Chinese). doi: 10.37188/CO.2023-0152
    [17]
    张智淼, 王承邈, 谢冕, 等. 基于超构透镜的微型头戴式荧光显微镜设计[J]. 中国光学(中英文),2024,17(3):512-520. doi: 10.37188/CO.2023-0237

    ZHANG ZH M, WANG CH M, XIE M, et al. Design of miniature head-mounted fluorescence microscope based on metalens[J]. Chinese Optics, 2024, 17(3): 512-520. (in Chinese). doi: 10.37188/CO.2023-0237
    [18]
    张旭, 李世杰, 刘丙才, 等. 凹非球面的非零位干涉检测技术[J]. 中国光学(中英文),2024,17(1):140-149. doi: 10.37188/CO.2023-0042

    ZHANG X, LI SH J, LIU B C, et al. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. (in Chinese). doi: 10.37188/CO.2023-0042
    [19]
    王同盟, 高芬, 李兵. 基于空洞空间卷积网络的点衍射干涉图像相位解包技术[J]. 光学 精密工程,2024,32(2):208-220. doi: 10.37188/OPE.20243202.0208

    WANG T M, GAO F, LI B. Phase unwrapping technology about point diffraction interference fringe based on atrous spatial convolutional networks[J]. Optics and Precision Engineering, 2024, 32(2): 208-220. (in Chinese). doi: 10.37188/OPE.20243202.0208
    [20]
    周志鹏, 楼盈天, 王升帆, 等. 基于卡尔曼滤波的激光外差干涉位移测量误差补偿[J]. 光学 精密工程,2024,32(3):357-365. doi: 10.37188/OPE.20243203.0357

    ZHOU ZH P, LOU Y T, WANG SH F, et al. Error compensation for laser heterodyne interferometric displacement measurement based on Kalman filter[J]. Optics and Precision Engineering, 2024, 32(3): 357-365. (in Chinese). doi: 10.37188/OPE.20243203.0357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(3) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return