Citation: | HUANG Hao-hua, LI Wei, LIU Rui, ZHANG Wei, ZHANG Jing-ying, LI Wen-hao. Achromatic monolayer metalens with elongated field of view in a continuous waveband[J]. Chinese Optics. doi: 10.37188/CO.2025-0061 |
Metalenses are subject to off-axis aberrations and material dispersion, which fundamentally limit their ability to achieve both wide field-of-view (FOV) and broad operational bandwidth in imaging detection systems. In this paper, an achromatic monolayer metalens with an elongated FOV in a continuous waveband is constructed using an elaborately designed metasurface. Leveraging a quadratic phase profile for large-field-of-view (FOV) detection, the metasurface unit structure transmission phase is subsequently optimized via particle swarm optimization (PSO) to achieve continuous band dispersion tuning. This approach consequently enables expanded operational bandwidth under wide-FOV conditions. For a monolayer metalens with a numerical aperture of 0.351, an achromatic focusing field covering a ±20° FOV is obtained within the continuous waveband from 0.55 μm to 0.65 μm. The maximum focal length deviation along the optical axis is 3.2 μm (~0.08
[1] |
WIRTH-SINGH A, FRÖCH J E, YANG F, et al. Wide field of view large aperture meta-doublet eyepiece[J]. Light: Science & Applications, 2025, 14(1): 17.
|
[2] |
DENG J, WU K L, FU R, et al. Full-space and wide field-of-view metalens based on 1D photonic crystal[J]. Optics & Laser Technology, 2025, 182: 112187.
|
[3] |
CHEN CH CH, GU H G, LIU SH Y. Ultra-broadband diffractive imaging with unknown probe spectrum[J]. Light: Science & Applications, 2024, 13(1): 213.
|
[4] |
PENG Y Y, ZHANG J W, ZHOU X T, et al. Metalens in improving imaging quality: advancements, challenges, and prospects for future display[J]. Laser & Photonics Reviews, 2024, 18(4): 2300731.
|
[5] |
VALLE P J, CAGIGAL M P. Analytic design of multiple-axis, multifocal diffractive lenses[J]. Optics Letters, 2012, 37(6): 1121-1123. doi: 10.1364/OL.37.001121
|
[6] |
HAO Q, TAO X, HU Y, et al. Interferometric measurement of high-order aspheric surface parameter errors based on a virtual-real combination iterative algorithm[J]. Optics Express, 2021, 29(17): 27014-27030. doi: 10.1364/OE.435252
|
[7] |
PAN M Y, FU Y F, ZHENG M J, et al. Dielectric metalens for miniaturized imaging systems: progress and challenges[J]. Light: Science & Applications, 2022, 11(1): 195.
|
[8] |
RUBIN N A, D’AVERSA G, CHEVALIER P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
|
[9] |
ZUO J W, BAI J, CHOI S, et al. Chip-integrated metasurface full-Stokes polarimetric imaging sensor[J]. Light: Science & Applications, 2023, 12(1): 218.
|
[10] |
ARBABI E, KAMALI S M, ARBABI A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 2018, 5(8): 3132-3140. doi: 10.1021/acsphotonics.8b00362
|
[11] |
REN Y Z, GUO S H, ZHU W Q, et al. Full‐stokes polarimetry for visible light enabled by an all‐dielectric metasurface[J]. Advanced Photonics Research, 2022, 3(7): 2100373. doi: 10.1002/adpr.202100373
|
[12] |
LIU J Y, CHU J K, ZHANG R, et al. Wide field of view and full Stokes polarization imaging using metasurfaces inspired by the stomatopod eye[J]. Nanophotonics, 2023, 12(6): 1137-1146. doi: 10.1515/nanoph-2022-0712
|
[13] |
KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600. doi: 10.1021/acs.nanolett.6b01897
|
[14] |
ENGAY E, HUO D W, MALUREANU R, et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging[J]. Nano Letters, 2021, 21(9): 3820-3826. doi: 10.1021/acs.nanolett.1c00190
|
[15] |
. YANG Y, SEONG J, CHOI M, et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform[J]. Light: Science & Applications, 2023, 12(1): 152.
|
[16] |
LIU R, LI W H, ZHANG W, et al. Manipulating continuous optical spectra in the wave vector domain by metalens[J]. Optics Letters, 2025, 50(2): 598-601. doi: 10.1364/OL.544925
|
[17] |
SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7(1): 85.
|
[18] |
SUN T, HU J P, ZHU X J, et al. Broadband single‐chip full stokes polarization‐spectral imaging based on all‐dielectric spatial multiplexing metalens[J]. Laser & Photonics Reviews, 2022, 16(6): 2100650.
|
[19] |
CHEN W T, ZHU A Y, SISLER J, et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 2018, 18(12): 7801-7808. doi: 10.1021/acs.nanolett.8b03567
|
[20] |
ZHANG F, PU M B, LI X, et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces[J]. Advanced Materials, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157
|
[21] |
. WANG J L, DENG Y T, WANG CH M, et al. Portable astronomical observation system based on large-aperture concentric-ring metalens[J]. Light: Science & Applications, 2025, 14(1): 2.
|
[22] |
BARANIKOV A V, KHAIDAROV E, LASSALLE E, et al. Large field‐of‐view and multi‐color imaging with GaP quadratic metalenses[J]. Laser & Photonics Reviews, 2024, 18(1): 2300553.
|
[23] |
KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
|
[24] |
WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
|
[25] |
CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
|
[26] |
ZHANG Y X, JIN J J, PU M B, et al. Full stokes polarimetry for wide‐angle incident light[J]. Physica Status Solidi (RRL)–Rapid Research Letters, 2020, 14(5): 2000044. doi: 10.1002/pssr.202000044
|
[27] |
LIU S J, ZHANG Z J, CHENG J X, et al. Design of full stokes vector polarimetry based on metasurfaces for wide-angle incident light[J]. Photonics, 2023, 10(4): 382. doi: 10.3390/photonics10040382
|
[28] |
GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902-4907. doi: 10.1021/acs.nanolett.7b01888
|
[29] |
HUANG ZH Y, QIN M S, GUO X W, et al. Achromatic and wide-field metalens in the visible region[J]. Optics Express, 2021, 29(9): 13542-13551. doi: 10.1364/OE.422126
|
[30] |
PU M B, LI X, GUO Y H, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Optics Express, 2017, 25(25): 31471-31477. doi: 10.1364/OE.25.031471
|
[31] |
VAN DEN BOS A. Rayleigh wave-front criterion: comment[J]. Journal of the Optical Society of America A, 1999, 16(9): 2307-2309. doi: 10.1364/JOSAA.16.002307
|
[32] |
ZHAO Y N, CHEN CH, ZHONG X, et al. Enhancing OFDM with index modulation using heuristic geometric constellation shaping and generalized interleaving for underwater VLC[J]. Optics Express, 2024, 32(8): 13720-13732. doi: 10.1364/OE.521045
|
[33] |
ZHANG CH, CHEN M SH, ZHANG L R, et al. Broadband achromatic metalens design based on predictive neural network and particle swarm optimization-genetic algorithm[J]. New Journal of Physics, 2023, 25(10): 103040. doi: 10.1088/1367-2630/ad02dc
|
[34] |
WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
|