Turn off MathJax
Article Contents
LI En-ze, PAN Yu, GU Guo-chao, JIANG Xue, LIN Guan-yu, LI Bo. Athermal design of a space camera using a single lens material over a wide temperature range[J]. Chinese Optics. doi: 10.37188/CO.2025-0065
Citation: LI En-ze, PAN Yu, GU Guo-chao, JIANG Xue, LIN Guan-yu, LI Bo. Athermal design of a space camera using a single lens material over a wide temperature range[J]. Chinese Optics. doi: 10.37188/CO.2025-0065

Athermal design of a space camera using a single lens material over a wide temperature range

cstr: 32171.14.CO.2025-0065
Funds:  Provincial-Institutional Cooperation Special Fund(2024SYHZ0025)、Key Research and Development Program of the Ministry of Science and Technology(2022YFB3903202)
More Information
  • Catadioptric space cameras are widely used in space exploration, However, temperature variations can degrade their imaging performance. To address this issue, this paper presents an athermal design for a catadioptric space camera operating over a wide temperature range. Initially, the temperature effects on optical elements, mechanical structures, and other components were analyzed, and convenient methods for thermal aberration compensation are summarized. Subsequently, taking a camera with a spectral range of 400–1000 nm, a focal length of 525 mm, and an F-number of 3.5 as the design case, an athermal solution is developed. By selecting appropriate materials for the mirror substrates and support structures, and using fused silica as the single lens material to correct aberrations, the optical system maintains stable performance in space environments. Final simulation results confirm that the optimized camera maintains a Modulation Transfer Function (MTF) value above 0.4 at 77 lp/mm (Nyquist frequency) over a temperature range of –60°C to 150°C. The camera exhibits stable material properties, excellent imaging quality, and consistent performance under extreme temperatures. This design demonstrates significant potential for applications in space exploration and related fields.

     

  • loading
  • [1]
    曹一青, 沈志娟. 长波红外大孔径长焦距无热化光学系统设计[J]. 光子学报,2024,53(3):0322004. doi: 10.3788/gzxb20245303.0322004

    CAO Y Q, SHEN ZH J. Design of long-wave infrared athermalized optical system with large aperture and long focal length[J]. Acta Photonica Sinica, 2024, 53(3): 0322004. (in Chinese). doi: 10.3788/gzxb20245303.0322004
    [2]
    PAN G T, LI B, GU G CH, et al. Analysis of the impact of temperature on the spectral shift in ultraviolet hyperspectral imaging spectrometers[J]. Optics Express, 2024, 32(7): 11774-11793. doi: 10.1364/OE.517945
    [3]
    张卓, 蔡猛. 双波段红外光学系统无热化设计[J]. 电光与控制,2015,22(5):63-67.

    ZHANG ZH, CAI M. Athermalization design of dual-wavelength infrared optical system[J]. Electronics Optics & Control, 2015, 22(5): 63-67. (in Chinese).
    [4]
    孙宏宇. 紧凑型折/衍混合中波红外无热化成像光学系统[J]. 光电技术应用,2016,31(3):20-24.

    SUN H Y. Compact refractive and diffractive hybrid MWIR athermalizing optical imaging system[J]. Electro-Optic Technology Application, 2016, 31(3): 20-24. (in Chinese).
    [5]
    TAMAGAWA Y, WAKABAYASHI S, TAJIME T. New design method for athermalized optical systems[J]. Proceedings of SPIE, 1992, 1752: 232-238. doi: 10.1117/12.130734
    [6]
    胡玉禧, 周绍祥, 相里斌, 等. 消热差光学系统设计[J]. 光学学报,2000,20(10):1386-1391.

    HU Y X, ZHOU SH X, XIANG L B, et al. Design of athermal optical system[J]. Acta Optica Sinica, 2000, 20(10): 1386-1391. (in Chinese).
    [7]
    LI R G. Passively athermalized broadband optical design using doublet combinations[J]. Applied Optics, 2014, 53(18): 3903-3907. doi: 10.1364/AO.53.003903
    [8]
    解娜, 崔庆丰. 基于权重分组的可见光光学系统无热化设计[J]. 光学学报,2018,38(12):1222001. doi: 10.3788/AOS201838.1222001

    XIE N, CUI Q F. Athermalization design of visible light optical system based on grouping by weight[J]. Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese). doi: 10.3788/AOS201838.1222001
    [9]
    XIE N, CUI Q F, SUN L, et al. Optical athermalization in the visible waveband using the 1+∑method[J]. Applied Optics, 2019, 58(3): 635-641. doi: 10.1364/AO.58.000635
    [10]
    LI J, DING Y L, LIU X J, et al. Achromatic and athermal design of aerial catadioptric optical systems by efficient optimization of materials[J]. Sensors, 2023, 23(4): 1754. doi: 10.3390/s23041754
    [11]
    ZHANG X, FANG X, LI T, et al. Design method for eliminating spectral line tilt in a multiple sub-pupil ultra-spectral imager (MSPUI)[J]. Optics Express, 2024, 32(7): 11583-11599. doi: 10.1364/OE.514538
    [12]
    ZHANG X, LI B, ZHI D D, et al. Stray light analysis and suppression of a UV multiple sub-pupil ultra-spectral imager[J]. Applied Optics, 2024, 63(23): 6112-6120. doi: 10.1364/AO.531177
    [13]
    ZHANG L, LI B, LI H SH, et al. Method for designing a grid-slit spectrometer with low spectral-line bending[J]. Optics and Lasers in Engineering, 2024, 183: 108514. doi: 10.1016/j.optlaseng.2024.108514
    [14]
    徐思华, 彭小强, 铁贵鹏, 等. 同质材料反射系统热特性研究[J]. 应用光学,2020,41(1):60-66. doi: 10.5768/JAO202041.0101009

    XU S H, PENG X Q, TIE G P, et al. Study on thermal characteristic of homogeneous material reflective system[J]. Applied Optics, 2020, 41(1): 60-66. (in Chinese). doi: 10.5768/JAO202041.0101009
    [15]
    LIM T Y, PARK S C. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map[J]. Optics Express, 2016, 24(16): 18049. doi: 10.1364/OE.24.018049
    [16]
    孙景浩, 杨照华, 吴云, 等. 基于消色差透镜的单像素与计算关联光谱成像[J]. 光学 精密工程,2023,31(16):2333-2342. doi: 10.37188/OPE.20233116.2333

    SUN J H, YANG ZH H, WU Y, et al. A single-pixel and computational ghost spectral imaging system based on achromatic lens[J]. Optics and Precision Engineering, 2023, 31(16): 2333-2342. (in Chinese). doi: 10.37188/OPE.20233116.2333
    [17]
    张洪伟, 丁亚林, 马迎军, 等. 红外双波段双视场成像告警系统设计[J]. 光学 精密工程,2020,28(6):1283-1294. doi: 10.3788/OPE.20202806.1283

    ZHANG H W, DING Y L, MA Y J, et al. Design of infrared dual-band/dual-FOV imaging early warning system[J]. Optics and Precision Engineering, 2020, 28(6): 1283-1294. (in Chinese). doi: 10.3788/OPE.20202806.1283
    [18]
    叶卉, 李晓峰, 崔壮壮, 等. 熔石英玻璃高效低缺陷磁辅助抛光[J]. 光学 精密工程,2022,30(15):1857-1867. doi: 10.37188/OPE.20223015.1857

    YE H, LI X F, CUI ZH ZH, et al. Magnetic-assisted polishing of fused silica optics with high efficiency and low defects[J]. Optics and Precision Engineering, 2022, 30(15): 1857-1867. (in Chinese). doi: 10.37188/OPE.20223015.1857
    [19]
    李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学,2022,15(1):65-71. doi: 10.37188/CO.2021-0127

    LI H SH, LI B, LI H CH, et al. Optical design of a wide spectrum UV imager based on a lens material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese). doi: 10.37188/CO.2021-0127
    [20]
    叶井飞, 朱润徽, 马梦聪, 等. 紫外宽光谱大相对孔径光学系统设计[J]. 应用光学,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001

    YE J F, ZHU R H, MA M C, et al. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Applied Optics, 2021, 42(5): 761-766. doi: 10.5768/JAO202142.0501001
    [21]
    FAN J Z, WANG Y W, GU G CH, et al. Development of an imaging spectrometer with a high signal-to-noise ratio based on high energy transmission efficiency for soil organic matter detection[J]. Sensors, 2024, 24(13): 4385. doi: 10.3390/s24134385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article views(0) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return