Citation: | LI En-ze, PAN Yu, GU Guo-chao, JIANG Xue, LIN Guan-yu, LI Bo. Athermal design of a space camera using a single lens material over a wide temperature range[J]. Chinese Optics. doi: 10.37188/CO.2025-0065 |
Catadioptric space cameras are widely used in space exploration, However, temperature variations can degrade their imaging performance. To address this issue, this paper presents an athermal design for a catadioptric space camera operating over a wide temperature range. Initially, the temperature effects on optical elements, mechanical structures, and other components were analyzed, and convenient methods for thermal aberration compensation are summarized. Subsequently, taking a camera with a spectral range of 400–
[1] |
曹一青, 沈志娟. 长波红外大孔径长焦距无热化光学系统设计[J]. 光子学报,2024,53(3):0322004. doi: 10.3788/gzxb20245303.0322004
CAO Y Q, SHEN ZH J. Design of long-wave infrared athermalized optical system with large aperture and long focal length[J]. Acta Photonica Sinica, 2024, 53(3): 0322004. (in Chinese). doi: 10.3788/gzxb20245303.0322004
|
[2] |
PAN G T, LI B, GU G CH, et al. Analysis of the impact of temperature on the spectral shift in ultraviolet hyperspectral imaging spectrometers[J]. Optics Express, 2024, 32(7): 11774-11793. doi: 10.1364/OE.517945
|
[3] |
张卓, 蔡猛. 双波段红外光学系统无热化设计[J]. 电光与控制,2015,22(5):63-67.
ZHANG ZH, CAI M. Athermalization design of dual-wavelength infrared optical system[J]. Electronics Optics & Control, 2015, 22(5): 63-67. (in Chinese).
|
[4] |
孙宏宇. 紧凑型折/衍混合中波红外无热化成像光学系统[J]. 光电技术应用,2016,31(3):20-24.
SUN H Y. Compact refractive and diffractive hybrid MWIR athermalizing optical imaging system[J]. Electro-Optic Technology Application, 2016, 31(3): 20-24. (in Chinese).
|
[5] |
TAMAGAWA Y, WAKABAYASHI S, TAJIME T. New design method for athermalized optical systems[J]. Proceedings of SPIE, 1992, 1752: 232-238. doi: 10.1117/12.130734
|
[6] |
胡玉禧, 周绍祥, 相里斌, 等. 消热差光学系统设计[J]. 光学学报,2000,20(10):1386-1391.
HU Y X, ZHOU SH X, XIANG L B, et al. Design of athermal optical system[J]. Acta Optica Sinica, 2000, 20(10): 1386-1391. (in Chinese).
|
[7] |
LI R G. Passively athermalized broadband optical design using doublet combinations[J]. Applied Optics, 2014, 53(18): 3903-3907. doi: 10.1364/AO.53.003903
|
[8] |
解娜, 崔庆丰. 基于权重分组的可见光光学系统无热化设计[J]. 光学学报,2018,38(12):1222001. doi: 10.3788/AOS201838.1222001
XIE N, CUI Q F. Athermalization design of visible light optical system based on grouping by weight[J]. Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese). doi: 10.3788/AOS201838.1222001
|
[9] |
XIE N, CUI Q F, SUN L, et al. Optical athermalization in the visible waveband using the 1+∑method[J]. Applied Optics, 2019, 58(3): 635-641. doi: 10.1364/AO.58.000635
|
[10] |
LI J, DING Y L, LIU X J, et al. Achromatic and athermal design of aerial catadioptric optical systems by efficient optimization of materials[J]. Sensors, 2023, 23(4): 1754. doi: 10.3390/s23041754
|
[11] |
ZHANG X, FANG X, LI T, et al. Design method for eliminating spectral line tilt in a multiple sub-pupil ultra-spectral imager (MSPUI)[J]. Optics Express, 2024, 32(7): 11583-11599. doi: 10.1364/OE.514538
|
[12] |
ZHANG X, LI B, ZHI D D, et al. Stray light analysis and suppression of a UV multiple sub-pupil ultra-spectral imager[J]. Applied Optics, 2024, 63(23): 6112-6120. doi: 10.1364/AO.531177
|
[13] |
ZHANG L, LI B, LI H SH, et al. Method for designing a grid-slit spectrometer with low spectral-line bending[J]. Optics and Lasers in Engineering, 2024, 183: 108514. doi: 10.1016/j.optlaseng.2024.108514
|
[14] |
徐思华, 彭小强, 铁贵鹏, 等. 同质材料反射系统热特性研究[J]. 应用光学,2020,41(1):60-66. doi: 10.5768/JAO202041.0101009
XU S H, PENG X Q, TIE G P, et al. Study on thermal characteristic of homogeneous material reflective system[J]. Applied Optics, 2020, 41(1): 60-66. (in Chinese). doi: 10.5768/JAO202041.0101009
|
[15] |
LIM T Y, PARK S C. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map[J]. Optics Express, 2016, 24(16): 18049. doi: 10.1364/OE.24.018049
|
[16] |
孙景浩, 杨照华, 吴云, 等. 基于消色差透镜的单像素与计算关联光谱成像[J]. 光学 精密工程,2023,31(16):2333-2342. doi: 10.37188/OPE.20233116.2333
SUN J H, YANG ZH H, WU Y, et al. A single-pixel and computational ghost spectral imaging system based on achromatic lens[J]. Optics and Precision Engineering, 2023, 31(16): 2333-2342. (in Chinese). doi: 10.37188/OPE.20233116.2333
|
[17] |
张洪伟, 丁亚林, 马迎军, 等. 红外双波段双视场成像告警系统设计[J]. 光学 精密工程,2020,28(6):1283-1294. doi: 10.3788/OPE.20202806.1283
ZHANG H W, DING Y L, MA Y J, et al. Design of infrared dual-band/dual-FOV imaging early warning system[J]. Optics and Precision Engineering, 2020, 28(6): 1283-1294. (in Chinese). doi: 10.3788/OPE.20202806.1283
|
[18] |
叶卉, 李晓峰, 崔壮壮, 等. 熔石英玻璃高效低缺陷磁辅助抛光[J]. 光学 精密工程,2022,30(15):1857-1867. doi: 10.37188/OPE.20223015.1857
YE H, LI X F, CUI ZH ZH, et al. Magnetic-assisted polishing of fused silica optics with high efficiency and low defects[J]. Optics and Precision Engineering, 2022, 30(15): 1857-1867. (in Chinese). doi: 10.37188/OPE.20223015.1857
|
[19] |
李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学,2022,15(1):65-71. doi: 10.37188/CO.2021-0127
LI H SH, LI B, LI H CH, et al. Optical design of a wide spectrum UV imager based on a lens material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese). doi: 10.37188/CO.2021-0127
|
[20] |
叶井飞, 朱润徽, 马梦聪, 等. 紫外宽光谱大相对孔径光学系统设计[J]. 应用光学,2021,42(5):761-766. doi: 10.5768/JAO202142.0501001
YE J F, ZHU R H, MA M C, et al. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Applied Optics, 2021, 42(5): 761-766. doi: 10.5768/JAO202142.0501001
|
[21] |
FAN J Z, WANG Y W, GU G CH, et al. Development of an imaging spectrometer with a high signal-to-noise ratio based on high energy transmission efficiency for soil organic matter detection[J]. Sensors, 2024, 24(13): 4385. doi: 10.3390/s24134385
|