Citation: | BI Shi-wen, ZHANG Xing-xiang, CHEN Li, LIU Jun-hao, FAN Shi-jie, FU Tian-jiao. Design of an ultra-compact wide-angle lens incorporating a curved image surface[J]. Chinese Optics. doi: 10.37188/CO.2025-0076 |
To address the demand for large field-of-view and high compactness in lightweight AR glasses equipped with cameras, this study proposes an optical design method incorporating a curved image plane. First, based on Gaussian optics theory, the curved image plane imaging system is theoretically analyzed. The Petzval surface curvature characteristics of various optical configurations are derived, and the performance advantages of the curved image plane are highlighted through comparative simulations of dual systems. Then, a wide-angle and compact optical system is designed using a segmented multi-objective optimization strategy. Finally, image quality evaluation and tolerance analysis are performed on the designed system. The compact optical system comprises five aspheric plastic lenses and a rear-mounted filter. It features a focal length of 3.1 mm, a field of view (FOV) up to 80°, and a total system length of only 4.07 mm. The design results show that at 223 lp/mm, the modulation transfer function (MTF) exceeds 0.32 across all fields. The maximum RMS spot radius is 2.41 μm, with a distortion of only 2.5%, and the relative illumination remains above 45% across the entire field. This work lays a foundation for the application of curved sensors and offers a technical reference for the design of wide-angle compact lenses.
[1] |
陈露, 刘辉, 封志明, 等. 基于局部焦距追迹计算优化的广角镜头设计方法[J]. 光子学报,2024,53(3):0322002. doi: 10.3788/gzxb20245303.0322002
CHEN L, LIU H, FENG ZH M, et al. Design method of wide angle lens based on optimization of local focal length through ray tracing[J]. Acta Photonica Sinica, 2024, 53(3): 0322002. (in Chinese). doi: 10.3788/gzxb20245303.0322002
|
[2] |
张越, 张宁, 徐熙平. 改进AO优化算法的折反射全景镜头畸变参数估计[J]. 中国光学(中英文),2025,18(1):89-104. doi: 10.37188/CO.2024-0118
ZHANG Y, ZHANG N, XU X P. Improved AO optimization algorithm for distortion parameter estimation of catadioptric omnidirectional lens[J]. Chinese Optics, 2025, 18(1): 89-104. (in Chinese). doi: 10.37188/CO.2024-0118
|
[3] |
熊玉朋, 陈适宇, 黄铖, 等. 基于自由曲面光学元件的大视场光学成像系统[J]. 光学 精密工程,2024,32(9):1261-1272. doi: 10.37188/OPE.20243209.1261
XIONG Y P, CHEN SH Y, HUANG CH, et al. Large field optical imaging system based on freeform surface optics[J]. Optics and Precision Engineering, 2024, 32(9): 1261-1272. (in Chinese). doi: 10.37188/OPE.20243209.1261
|
[4] |
WU J M, GUO Y D, DENG CH, et al. An integrated imaging sensor for aberration-corrected 3D photography[J]. Nature, 2022, 612(7938): 62-71. doi: 10.1038/s41586-022-05306-8
|
[5] |
韩耀辉, 王鹍, 朱友强, 等. 光子集成干涉阵列视场拼接子孔径光路设计[J]. 中国光学(中英文),2024,17(6):1458-1466. doi: 10.37188/CO.2024-0030
HAN Y H, WANG K, ZHU Y Q, et al. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458-1466. (in Chinese). doi: 10.37188/CO.2024-0030
|
[6] |
LOMBARDO S, BEHAGHEL T, CHAMBION B, et al. Curved CMOS sensor: characterization of the first fully functional prototype[J]. Proceedings of SPIE, 2018, 10679: 1067910.
|
[7] |
ITONAGA K, ARIMURA T, MATSUMOTO K, et al. A novel curved CMOS image sensor integrated with imaging system[C]. 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, IEEE, 2014: 1-2.
|
[8] |
GUENTER B, JOSHI N, STOAKLEY R, et al. Highly curved image sensors: a practical approach for improved optical performance[J]. Optics Express, 2017, 25(12): 13010-13023. doi: 10.1364/OE.25.013010
|
[9] |
DUMAS D, FENDLER M, BAIER N, et al. Curved focal plane detector array for wide field cameras[J]. Applied Optics, 2012, 51(22): 5419-5424. doi: 10.1364/AO.51.005419
|
[10] |
JOAQUINA K, CALVINHAC L, STRUSS Q, et al. Curved cmos imaging sensors for enhanced astronomical optical instruments[J]. Proceedings of SPIE, 2022, 12191: 121910H.
|
[11] |
JOAQUINA K, JAHN W, STRUSS Q, et al. Curved CMOS imaging sensor: development and reliability test results[J]. Proceedings of SPIE, 2023, 12777: 127776S.
|
[12] |
XUE G, ZHANG CH X, ZHANG ZH X, et al. Analysis of the impact of temperature on the performance of curved surface CMOS image sensors[J]. AIP Advances, 2025, 15(2): 025101. doi: 10.1063/5.0252687
|
[13] |
RESHIDKO D, SASIAN J. Optical analysis of miniature lenses with curved imaging surfaces[J]. Applied Optics, 2015, 54(28): E216-E223. doi: 10.1364/AO.54.00E216
|
[14] |
ZUBER F, CHAMBION B, GASCHET C, et al. Tolerancing and characterization of curved image sensor systems[J]. Applied Optics, 2020, 59(28): 8814-8821. doi: 10.1364/AO.400950
|
[15] |
HUGOT E, LOMBARDO S, BEHAGHEL T, et al. Curved sensors: experimental performance of CMOS prototypes and wide field related imagers[J]. Proceedings of SPIE, 2019, 11180: 111802Y.
|
[16] |
Image Sensors World. Review of 3D Cameras for AR Glasses[EB/OL]. Image Sensors World, (2018-04-26)[2025-06-15]. https://image-sensors-world.blogspot.com/search?q=Review+of+3D+cameras+for+AR+glasses.
|
[17] |
李航, 颜昌翔. 800万像素手机广角镜头设计[J]. 中国光学,2014,7(3):456-461.
LI H, YAN CH X. Design of wide-angle lens for 8 mega-pixel mobile phone camera[J]. Chinese Optics, 2014, 7(3): 456-461. (in Chinese).
|
[18] |
李延伟, 伍雁雄, 陈太喜, 等. 超薄超短物像距高分辨率检测成像系统设计与试验[J]. 中国光学(中英文),2024,17(1):61-68. doi: 10.37188/CO.2023-0099
LI Y W, WU Y X, CHEN T X, et al. Design and experiment of high-resolution detection imaging system with ultra-thin and ultra-short object-image distance[J]. Chinese Optics, 2024, 17(1): 61-68. (in Chinese). doi: 10.37188/CO.2023-0099
|
[19] |
史晓刚, 薛正辉, 李会会, 等. 增强现实显示技术综述[J]. 中国光学,2021,14(5):1146-1161. doi: 10.37188/CO.2021-0032
SHI X G, XUE ZH H, LI H H, et al. Review of augmented reality display technology[J]. Chinese Optics, 2021, 14(5): 1146-1161. (in Chinese). doi: 10.37188/CO.2021-0032
|
[20] |
张以谟. 现代应用光学[M]. 北京: 电子工业出版社, 2018.
ZHANG Y M. Contemporary Applied Optics[M]. Beijing: Publishing House of Electronics Industry, 2018. (in Chinese).
|
[21] |
李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2003.
LI X T, CEN ZH F. Geometrical Optics, Aberrations and Optical Design[M]. Hangzhou: Zhejiang University Press, 2003. (in Chinese) (查阅网上资料, 未找到本条文献英文信息, 请确认).
|
[22] |
李升辉. 大相对孔径高分辨率手机镜头设计[J]. 激光技术,2022,46(1):139-142.
LI SH H. Large numerical aperture and high resolution mobile phone lens[J]. Laser Technology, 2022, 46(1): 139-142. (in Chinese).
|
[23] |
玉晶光电(厦门)有限公司. 光学成像镜头: 中国, 108627958B[P]. 2020-03-20.
Largan Precision (Xiamen) Co. , Ltd. Optical imaging lens: CN, 108627958B[P]. 2020-03-20. (in Chinese).
|
[24] |
大立光电股份有限公司. 光学影像撷取镜片组、取像装置及电子装置: 中国, 108931845B[P]. 2020-05-15.
Largan Precision Co. , Ltd. Optical imaging lens assembly, image capturing unit and electronic device: CN, 108931845B[P]. 2020-05-15. (in Chinese).
|
[25] |
MOSS S, ZHANG Z, BEVAN A J, et al. Large area curved silicon modules for future trackers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 1075: 170388. doi: 10.1016/j.nima.2025.170388
|
[26] |
师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学,2014,7(1):26-46.
SHI T, YANG Y Y, ZHANG L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46. (in Chinese).
|
[27] |
张旭, 李世杰, 刘丙才, 等. 凹非球面的非零位干涉检测技术[J]. 中国光学(中英文),2024,17(1):140-149. doi: 10.37188/CO.2023-0042
ZHANG X, LI SH J, LIU B C, et al. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. (in Chinese). doi: 10.37188/CO.2023-0042
|
[28] |
勾治践, 樊仲维, 卢锷, 等. 光学塑料透镜注射成型关键技术的研究[J]. 光学 精密工程,2000,8(6):526-531.
GOU ZH J, FAN ZH W, LU E, et al. Injection molding method for optical plastics lens[J]. Optics and Precision Engineering, 2000, 8(6): 526-531. (in Chinese).
|
[29] |
MALACARA-HERNÁNDEZ D, MALACARA-HERNÁNDEZ Z. Handbook of Optical Design[M]. 3rd ed. Boca Raton: CRC Press, 2017.
|