Volume 17 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
FAN Li-na, SHA Jin-qiao, CAO Zhao-liang. Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting[J]. Chinese Optics, 2024, 17(2): 493-500. doi: 10.37188/CO.EN-2023-0030
Citation: FAN Li-na, SHA Jin-qiao, CAO Zhao-liang. Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting[J]. Chinese Optics, 2024, 17(2): 493-500. doi: 10.37188/CO.EN-2023-0030

Incident angle-tuned filter based on 1D resonant waveguide grating in full conical mounting

Funds:  Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Key Research and De-Velopment Project of the Department of Science and Technology of Jilin Province (No. 20220203033SF)
More Information
  • Author Bio:

    Fan Li-na (1980—), female, Yuci city, Shanxi province, Ph.D., received her Ph.D. from the University of Shanghai for Science and Technology in 2020 and is mainly engaged in research on micro-nano optical devices. E-mail: lnfan@mail.usts.edu.cn

  • Corresponding author: lnfan@mail.usts.edu.cn
  • Received Date: 19 Nov 2023
  • Rev Recd Date: 05 Dec 2023
  • Accepted Date: 29 Dec 2023
  • Available Online: 09 Jan 2024
  • This paper proposes and demonstrates a tunable filter using full conical mounting. The designed 1D resonant waveguide grating presents a tunable single reflection peak. The peak reflectance can theoretically reach 100%. The resonant wavelength can be tuned from 642.5 nm to 484.6 nm by changing the incident angle. The resonance between the 1st-order diffracted wave and fundamental transverse electric (TE) guided mode generates the reflection peak. This feature was achieved by optimizing the grating thickness to support the TE guided mode and suppress the transverse magnetic (TM) guided mode. The same concept can be applied to tunable filters with high dynamic range by increasing the thickness and period of grating in equal proportion.

     

  • loading
  • [1]
    FENG S Q, LIU T T, CHEN W Y, et al. Enhanced sum-frequency generation from etchless lithium niobate empowered by dual quasi-bound states in the continuum[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(12): 124214.
    [2]
    WU F, WU J J, GUO ZH W, et al. Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014028. doi: 10.1103/PhysRevApplied.12.014028
    [3]
    QIAN L Y, WANG K N, ZHU W, et al. Enhanced sensing ability in a single-layer guided-mode resonant optical biosensor with deep grating[J]. Optics Communications, 2019, 452: 273-280. doi: 10.1016/j.optcom.2019.07.047
    [4]
    HSU H Y, LAN Y H, HUANG CH SH. A gradient grating period guided-mode resonance spectrometer[J]. IEEE Photonics Journal, 2018, 10(1): 4500109.
    [5]
    FEHREMBACH A L, SHARSHAVINA K, LEMARCHAND F, et al. 2 × 1D crossed strongly modulated gratings for polarization independent tunable narrowband transmission filters[J]. Journal of the Optical Society of America A, 2017, 34(2): 234-240. doi: 10.1364/JOSAA.34.000234
    [6]
    QIAN L Y, ZHU W, WANG K N, et al. Polarization-controlled reflectance tunable narrow-band filter with single channel based on sparse dielectric grating[J]. Optics Communications, 2019, 443: 123-128. doi: 10.1016/j.optcom.2019.03.010
    [7]
    KUO W K, HSU C J. Two-dimensional grating guided-mode resonance tunable filter[J]. Optics Express, 2017, 25(24): 29642-29649. doi: 10.1364/OE.25.029642
    [8]
    FERRARO A, TANGA A A, ZOGRAFOPOULOS D C, et al. Guided mode resonance flat-top bandpass filter for terahertz telecom applications[J]. Optics Letters, 2019, 44(17): 4239-4242. doi: 10.1364/OL.44.004239
    [9]
    SAKAT E, VINCENT G, GHENUCHE P, et al. Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures[J]. Optics Express, 2012, 20(12): 13082-13090. doi: 10.1364/OE.20.013082
    [10]
    SALEEM M R, ZHENG D D, BAI B F, et al. Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence[J]. Optics Express, 2012, 20(15): 16974-16980. doi: 10.1364/OE.20.016974
    [11]
    FANG CH L, DAI B, LI ZH, et al. Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge[J]. Optics Letters, 2016, 41(22): 5302-5305. doi: 10.1364/OL.41.005302
    [12]
    FENG SH F, ZHANG X P, SONG J Y, et al. Theoretical analysis on the tuning dynamics of the waveguide-grating structures[J]. Optics Express, 2009, 17(2): 426-436. doi: 10.1364/OE.17.000426
    [13]
    CHAUDHURI R R, ENEMUO A N, SONG Y, et al. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning[J]. Optics Communications, 2018, 418: 1-9. doi: 10.1016/j.optcom.2018.02.045
    [14]
    WANG C T, HOU H H, CHANG P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Optics Express, 2016, 24(20): 22892-22898. doi: 10.1364/OE.24.022892
    [15]
    UDDIN M J, MAGNUSSON R. Efficient guided-mode-resonant tunable color filters[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1552-1554. doi: 10.1109/LPT.2012.2208453
    [16]
    COVES Á, GIMENO B, ANDRÉS M V. Oblique incidence and polarization effects in coupled gratings[J]. Optics Express, 2012, 20(23): 25454-25460. doi: 10.1364/OE.20.025454
    [17]
    YUKINO R, SAHOO P K, SHARMA J, et al. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation[J]. AIP Advances, 2017, 7(1): 015313. doi: 10.1063/1.4975344
    [18]
    REN ZH B, SUN Y H, HU J SH, et al. Nonpolarizing guided-mode resonance filter with high tolerance of conical angle[J]. Journal of Optics, 2018, 20(8): 085601. doi: 10.1088/2040-8986/aacdd6
    [19]
    WANG D Y, WANG Q K, WU M T. Spectral characteristics of a guided mode resonant filter with planes of incidence[J]. Applied Optics, 2018, 57(27): 7793-7797. doi: 10.1364/AO.57.007793
    [20]
    WANG W, CAI W, SHI ZH, et al. Polarization-insensitive one-dimensional guided-mode resonance filter operating at conical mounting[J]. Optics Letters, 2018, 43(21): 5226-5229. doi: 10.1364/OL.43.005226
    [21]
    KODALI A K, SCHULMERICH M, IP J, et al. Narrowband midinfrared reflectance filters using guided mode resonance[J]. Analytical Chemistry, 2010, 82(13): 5697-5706. doi: 10.1021/ac1007128
    [22]
    LI Y Y, HU CH, WU Y CH, et al. Numerical investigation of one-dimensional nonpolarizing guided-mode resonance gratings with conformal dielectric films[J]. Optics Express, 2013, 21(1): 345-357. doi: 10.1364/OE.21.000345
    [23]
    FAN L N, JIA K H, MA J SH. Transmission filter controlled by incident conditions in single-layer waveguide grating structures[J]. Applied Optics, 2019, 58(31): 8371-8375. doi: 10.1364/AO.58.008371
    [24]
    WANG D Y, WANG Q K, LIU D M. Polarization-insensitive filter for incidence between classic and full conical mountings[J]. IEEE Photonics Technology Letters, 2018, 30(5): 495-498. doi: 10.1109/LPT.2018.2799950
    [25]
    LACOUR D, GRANET G, PLUMEY J P, et al. Polarization independence of a one-dimensional grating in conical mounting[J]. Journal of the Optical Society of America A, 2003, 20(8): 1546-1552. doi: 10.1364/JOSAA.20.001546
    [26]
    MOHARAM M G, GAYLORD T K. Diffraction analysis of dielectric surface-relief gratings[J]. Journal of the Optical Society of America, 1982, 72(10): 1385-1392. doi: 10.1364/JOSA.72.001385
    [27]
    MAGNUSSON R, WANG S S. New principle for optical filters[J]. Applied Physics Letters, 1992, 61(9): 1022-1024. doi: 10.1063/1.107703
    [28]
    WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. doi: 10.1364/AO.32.002606
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(439) PDF downloads(220) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return