Citation: | AN Qi-chang, WANG Kun, LIU Xin-yue, LI Hongwen, ZHU Jiakang. Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0002 |
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes, a multichannel stripe tracking approach is employed, allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods. This approach enhances detection efficiency and reduces system complexity. Here, the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory. Error analysis was conducted on the system surface obtained through multipath interference. Potential applications of the interferometric method were explored. Finally, the principles of the multipath interference process were experimentally revealed. Evidently, flat-field calibration and incoherent digital synthesis enhanced the fringe contrast to more than 0.4, with the dynamic range exceeding 10 times the working center wavelength (
[1] |
SITARSKI B N, RAKICH A, CHIQUITO H, et al. The GMT telescope metrology system design[J]. Proceedings of the SPIE, 2022, 12182: 1218207. doi: 10.1117/12.2630598
|
[2] |
MCLEOD B A, BOUCHEZ A H, CATROPA D, et al. The wide field phasing testbed for the giant Magellan telescope[J]. Proceedings of the SPIE, 2022, 12182: 1218208. doi: 10.1117/12.2630588
|
[3] |
UMBRIACO G, VASSALLO D, FARINATO J, et al. Deformable lens for testing the performance of focal plane wavefront sensing using phase diversity[J]. Proceedings of the SPIE, 2022, 12185: 121856W. doi: 10.1117/12.2629385
|
[4] |
CATROPA D, MCLEOD B, D'ARCO J, et al. Piston-tip-tilt mirror array in the wide field phasing testbed for the giant Magellan telescope[J]. Proceedings of the SPIE, 2022, 12185: 121854I. doi: 10.1117/12.2630703
|
[5] |
DEMERS R, BOUCHEZ A, QUIRÓS-PACHECO F, et al. Phasing the segmented giant Magellan telescope: progress in testbeds and prototypes[J]. Proceedings of the SPIE, 2022, 12185: 1218518. doi: 10.1117/12.2630144
|
[6] |
YANG P Q, HIPPLER S, DEEN C P, et al. Characterization of the transmitted near-infrared wavefront error for the GRAVITY/VLTI Coudé infrared adaptive optics system[J]. Optics Express, 2013, 21(7): 9069-9080. doi: 10.1364/OE.21.009069
|
[7] |
BONNEFOIS A M, FUSCO T, MEIMON S, et al. Comparative theoretical and experimental study of a Shack-Hartmann and a phase diversity sensor, for high-precision wavefront sensing dedicated to space active optics[J]. Proceedings of the SPIE, 2017, 10563: 105634B. doi: 10.1117/12.2304263
|
[8] |
VOSTEEN L L A, DRAAISMA F, VAN WERKHOVEN W P, et al. Wavefront sensor for the ESA-GAIA mission[J]. Proceedings of the SPIE, 2009, 7439: 743914. doi: 10.1117/12.825240
|
[9] |
TRAUGER J, STAPELFELDT K, TRAUB W, et al. ACCESS: a NASA mission concept study of an actively corrected coronagraph for exoplanet system studies[J]. Proceedings of the SPIE, 2008, 7010: 701029. doi: 10.1117/12.789119
|
[10] |
LIOTARD A, BERNOT M, CARLAVAN M, et al. Wave-front sensing for space active optics: rascasse project[J]. Proceedings of the SPIE, 2017, 10563: 105632W. doi: 10.1117/12.2304111
|
[11] |
CHEFFOT A L, PLANTET C, PINNA E, et al. Differential piston sensing with LIFT: application to the GMT[J]. Proceedings of the SPIE, 2022, 12185: 1218557. doi: 10.1117/12.2630046
|
[12] |
HEDGLEN A D, CLOSE L M, HAFFERT S Y, et al. First lab results of segment/petal phasing with a pyramid wavefront sensor and a novel holographic dispersed fringe sensor (HDFS) from the giant Magellan telescope high contrast adaptive optics phasing testbed[J]. Proceedings of the SPIE, 2022, 12185: 1218516. doi: 10.1117/12.2629538
|
[13] |
WILHELM R, LUONG B, COURTEVILLE A, et al. Dual-wavelength low-coherence instantaneous phase-shifting interferometer to measure the shape of a segmented mirror with subnanometer precision[J]. Applied Optics, 2008, 47(29): 5473-5491. doi: 10.1364/AO.47.005473
|
[14] |
CODONA J L, DOBLE N. James Webb space telescope segment phasing using differential optical transfer functions[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(2): 029001. doi: 10.1117/1.JATIS.1.2.029001
|
[15] |
ACTON D S, KNIGHT J S, CONTOS A, et al. Wavefront sensing and controls for the James Webb space telescope[J]. Proceedings of the SPIE, 2012, 8442: 84422H. doi: 10.1117/12.925015
|
[16] |
LI L L, ZHAO H T, LIU C, et al. Intelligent metasurfaces: control, communication and computing[J]. eLight, 2022, 2: 7. doi: 10.1186/s43593-022-00013-3
|
[17] |
LIU ZH, WANG SH Q, RAO CH H. The co-phasing detection method for sparse optical synthetic aperture systems[J]. Chinese Physics B, 2012, 21(6): 069501. doi: 10.1088/1674-1056/21/6/069501
|
[18] |
CHEN ZH G, SEGEV M. Highlighting photonics: looking into the next decade[J]. eLight, 2021, 1: 2. doi: 10.1186/s43593-021-00002-y
|
[19] |
SIROHI R. Shearography and its applications—a chronological review[J]. Light: Advanced Manufacturing, 2022, 3(1): 35-64. doi: 10.37188/lam.2022.001
|
[20] |
AN Q CH, ZHANG H F, WU X X, et al. Photonics large-survey telescope internal motion metrology system[J]. Photonics, 2023, 10(5): 595. doi: 10.3390/photonics10050595
|
[21] |
EISENHAUER F, PERRIN G, STRAUBMEIER C, et al. GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI[J]. Proceedings of the International Astronomical Union, 2007, 3(S248): 100-101. doi: 10.1017/S1743921308018723
|