Turn off MathJax
Article Contents
LI Zhi-bin, XIN Yuan-ze, ZHANG Jian-qiang, SUN Chong-shang. Modeling and sliding mode control based on inverse compensation of piezo-positioning system[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0012
Citation: LI Zhi-bin, XIN Yuan-ze, ZHANG Jian-qiang, SUN Chong-shang. Modeling and sliding mode control based on inverse compensation of piezo-positioning system[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0012

Modeling and sliding mode control based on inverse compensation of piezo-positioning system

cstr: 32171.14.CO.EN-2024-0012
Funds:  Supported by National Natural Science Foundation of China (No. U23A20336, No. 52227811, No. 61933006); Shandong Provincial Natural Science Foundation (No. ZR2021QF117, No. ZR2021QF140)
More Information
  • Author Bio:

    LI Zhibin (1965—), male, native of Bazhong, Sichuan Province, Ph.D., professor, doctoral supervisor. He obtained his Ph.D. from Tsinghua University in 2003. He is currently a professor at College of Electrical Engineering and Automation, Shandong University of Science and Technology. His main research interests include modeling and control of complex system dynamics. E-mail: zhibin.li@sdust.edu.cn

    ZHANG Jianqiang (1992—), male, native of Qingzhou, Shandong Province, Ph.D., assistant professor at Center for Advanced Control and Smart Operations, Nanjing University. He obtained his Ph.D. from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2020. His main research focuses on laser communication servo systems, robust control, and model identification. E-mail: zhangjq7170@163.com

  • Corresponding author: zhangjq7170@163.com
  • Received Date: 08 Apr 2024
  • Accepted Date: 15 May 2024
  • Available Online: 25 May 2024
  • In order to enhance the control performance of piezo-positioning system, the influence of hysteresis characteristics and its compensation method are studied. Hammerstein model is used to model the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator. The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii (P-I) model and Hankel matrix system identification method, respectively. This model demonstrates good generalization capability for typical input frequencies below 200 Hz. A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed. Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation, the sliding mode inverse compensation control has a more ideal step response, no overshoot and the settling time is only 6.2 ms. In the frequency domain, the system closed-loop tracking bandwidth reaches 119.9 Hz, and the disturbance rejection bandwidth reaches 86.2 Hz. The proposed control strategy can effectively compensate the hysteresis nonlinearity, and improve the tracking accuracy and anti-disturbance capability of piezo-positioning system.

     

  • loading
  • [1]
    VASILJEV P, MAZEIKA D, KULVIETIS G. Modelling and analysis of omni-directional piezoelectric actuator[J]. Journal of Sound and Vibration, 2007, 308(3-5): 867-878. doi: 10.1016/j.jsv.2007.03.074
    [2]
    BROKATE M, SPREKELS J. Hysteresis and Phase Transitions[M]. New York: Springer, 1996.
    [3]
    LEE S H, ROYSTON T J, FRIEDMAN G. Modeling and compensation of hysteresis in piezoceramic transducers for vibration control[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(10): 781-790. doi: 10.1106/GQLJ-JGEU-MHG1-7JDF
    [4]
    JILES D, ATHERTON D. Ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1983, 19(5): 2183-2185. doi: 10.1109/TMAG.1983.1062594
    [5]
    AL JANAIDEH M, RAKHEJA S, SU CH Y. An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 734-744. doi: 10.1109/TMECH.2010.2052366
    [6]
    LI ZH, SHAN J J, GABBERT U. Inverse compensation of hysteresis using Krasnoselskii-Pokrovskii model[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 966-971. doi: 10.1109/TMECH.2018.2805761
    [7]
    WANG X H, SUN T. Preisach modeling of hysteresis for fast tool servo system[J]. Optics and Precision Engineering, 2009, 17(6): 1421-1425.
    [8]
    WONG P K, XU Q S, VONG CH M, et al. Rate-dependent hysteresis modeling and control of a piezostage using online support vector machine and relevance vector machine[J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1988-2001. doi: 10.1109/TIE.2011.2166235
    [9]
    DONG R L, TAN Y H, CHEN H, et al. A neural networks based model for rate-dependent hysteresis for piezoceramic actuators[J]. Sensors and Actuators A: Physical, 2008, 143(2): 370-376. doi: 10.1016/j.sna.2007.11.023
    [10]
    MAO J Q, DING H SH. Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis[J]. Science in China Series F: Information Sciences, 2009, 52(4): 656-673. doi: 10.1007/s11432-009-0026-8
    [11]
    QIN Y X, HU D J. Nonlinear modeling for piezoelectric actuators[J]. Journal of Shanghai Jiaotong University, 2004, 38(8): 1334-1336,1341. (in Chinese). doi: 10.3321/j.issn:1006-2467.2004.08.027
    [12]
    HAN T P, LI G P, SHEN J. Study on accurate positioning technology of piezoelectric ceramics micro-displacement actuator[J]. Transducer and Microsystem Technologies, 2010, 29(2): 51-53. (in Chinese). doi: 10.3969/j.issn.1000-9787.2010.02.016
    [13]
    SUN T, LI G P, SUN H Y. Accurate positioning and control of piezoelectric actuator based on Duhem model and inverse model[J]. Journal of Ningbo University (NSEE), 2017, 30(1): 13-17. (in Chinese).
    [14]
    LI L, LIU X D, WANG W, et al. Generalized nonlinear Preisach model for hysteresis nonlinearity of piezoceramic actuator and its numerical implementation[J]. Optics and Precision Engineering, 2007, 15(5): 706-712. (in Chinese).
    [15]
    AL JANAIDEH M, SU CH Y, RAKHEJA S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators[J]. Smart Materials and Structures, 2008, 17(3): 035026. doi: 10.1088/0964-1726/17/3/035026
    [16]
    XIAO SH L, LI Y M. Modeling and high dynamic compensating the rate-dependent hysteresis of piezoelectric actuators via a novel modified inverse Preisach model[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5): 1549-1557. doi: 10.1109/TCST.2012.2206029
    [17]
    LIU Y K, LÜ F R, GAO SH J, et al. Compensation of hysteresis effect of piezoelectric fast steering mirror in dynamic target tracking of ground-based large aperture telescope system[J]. Optics and Precision Engineering, 2022, 30(23): 3081-3089. (in Chinese). doi: 10.37188/OPE.20223023.3081
    [18]
    AL JANAIDEH M, RAKOTONDRABE M, AL-DARABSAH I, et al. Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator[J]. Control Engineering Practice, 2018, 72: 29-41. doi: 10.1016/j.conengprac.2017.11.001
    [19]
    WANG Q Q, SU CH Y, TAN Y H. On the control of plants with hysteresis: overview and a Prandtl-Ishlinskii hysteresis based control approach[J]. Acta Automatica Sinica, 2005, 31(1): 92-104.
    [20]
    ZHANG J Q, SUN CH SH, WU J B, et al. System identification and balanced truncation of fast steering mirror for laser communication[J]. Control Theory & Applications, 2023: 1-9. (in Chinese). (查阅网上资料, 未找到本条文献卷期信息, 请确认) .
    [21]
    LI ZH B, LI L, ZHANG J Q, et al. System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror[J]. Optics and Precision Engineering, 2023, 31(24): 3580-3594. (in Chinese). doi: 10.37188/OPE.20233124.3580
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article views(129) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return