Citation: | LIU Yi, JIANG Kai, FANG Xin-yue, YOU Ya-jun, HE Wen-jun, HOU Jia-xin, HAN Xue-feng, CHOU Xiu-jian. Widely-wavelength-tunable brillouin fiber laser with improved optical signal-to-noise ratio based on parity-time symmetric and saturable absorption effect[J]. Chinese Optics, 2024, 17(5): 1244-1253. doi: 10.37188/CO.EN-2024-0016 |
A widely-wavelength-tunable Brillouin fiber laser (BFL) with improved optical signal-to-noise ratio (OSNR) based on parity-time (PT) symmetric and saturable absorption (SA) effect is present. This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber (PM-EDF) Sagnac loop, which is composed of a PM-EDF, a coupler and two polarization controllers (PCs). By using the inherent birefringence characteristic of PM-EDF, two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected. One of these loops provides gain in the clockwise direction with in the Sagnac loop, while the other loop generates loss in the counterclockwise direction. By adjusting the PCs to control the polarization state of the PM-EDF, a single-longitudinal-mode (SLM) BFL can be achieved, as the PT symmetry is broken when the SA participating stimulated Brillouin scattering (SBS) gain and loss are well-matched and the gain surpasses the coupling coefficient. Compared to previous BFLs, the proposed BFL has a more streamlined structure and a wider wavelength tunable range, at the same time, it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output. Additionally, thanks to SA effect of the PM-EDF, the PT symmetric SBS gain contract is enhanced, resulting in a higher optical signal-to-noise (OSNR). The experimental results show that the laser has a wide tunable range of
[1] |
BRILLOUIN L. Diffusion de la lumière et des rayons X par un corps transparent homogène[J]. Annales de Physique, 1922, 9(17): 88-122. doi: 10.1051/anphys/192209170088
|
[2] |
MANDELSTAM L I. Light scattering by inhomogeneous media[J]. Zh Russ Fiz-Khim Ova, 1926, 58: 381-391.
|
[3] |
GARMIRE E. Perspectives on stimulated Brillouin scattering[J]. New Journal of Physics, 2017, 19(1): 011003. doi: 10.1088/1367-2630/aa5447
|
[4] |
AL-MASHHADANI M K S, AL-MASHHADANI T F, GOKTAS H H. Broadly tunable 40 GHz Brillouin frequency spacing multiwavelength Brillouin–Erbium fiber laser for DWDM[J]. Optics Communications, 2019, 451: 116-123. doi: 10.1016/j.optcom.2019.06.040
|
[5] |
AL-MANSOORI M H, AL-SHERIYANI A, YOUNIS M A A, et al. Widely tunable multiwavelength Brillouin-erbium fiber laser with triple Brillouin-shift wavelength spacing[J]. Optical Fiber Technology, 2018, 41: 21-26. doi: 10.1016/j.yofte.2017.12.012
|
[6] |
WANG L Y, LIU Y, YOU Y J, et al. Microwave photonic filter with a sub-kHz bandwidth based on a double ring Brillouin fiber laser[J]. Optics Letters, 2022, 47(16): 4143-4146. doi: 10.1364/OL.469193
|
[7] |
BASTIANINI F, DI SANTE R, FALCETELLI F, et al. Optical fiber sensing cables for Brillouin-based distributed measurements[J]. Sensors, 2019, 19(23): 5172. doi: 10.3390/s19235172
|
[8] |
XU Y P, LU P, BAO X Y. Compact single-end pumped Brillouin random fiber laser with enhanced distributed feedback[J]. Optics Letters, 2020, 45(15): 4236-4239. doi: 10.1364/OL.398593
|
[9] |
LIU Y, SHANG Y, YI X G, et al. Triple Brillouin frequency spacing Brillouin fiber laser sensor for temperature measurement[J]. Optical Fiber Technology, 2020, 54: 102106. doi: 10.1016/j.yofte.2019.102106
|
[10] |
SHANG Y, GUO R R, LIU Y, et al. Managing Brillouin frequency spacing for temperature measurement with Brillouin fiber laser sensor[J]. Optical and Quantum Electronics, 2020, 52(4): 211. doi: 10.1007/s11082-020-02330-8
|
[11] |
ZHU K Y, HE J Y, CHANG K, et al. The multi-wavelength Brillouin laser based on highly nonlinear fiber[J]. Proceedings of SPIE, 2022, 12169: 1216935. doi: 10.1117/12.2623571
|
[12] |
LOH W, YEGNANARAYANAN S, O’DONNELL F, et al. Ultra-narrow linewidth Brillouin laser with nanokelvin temperature self-referencing[J]. Optica, 2019, 6(2): 152-159. doi: 10.1364/OPTICA.6.000152
|
[13] |
AHMAD H, RAZAK N F, ZULKIFLI M Z, et al. Ultra-narrow linewidth single longitudinal mode Brillouin fiber ring laser using highly nonlinear fiber[J]. Laser Physics Letters, 2013, 10(10): 105105. doi: 10.1088/1612-2011/10/10/105105
|
[14] |
PARVIZI R, AROF H, ALI N M, et al. 0.16 nm spaced multi-wavelength Brillouin fiber laser in a figure-of-eight configuration[J]. Optics & Laser Technology, 2011, 43(4): 866-869.
|
[15] |
OU ZH H, BAO X Y, LI Y, et al. Ultranarrow linewidth Brillouin fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2058-2061. doi: 10.1109/LPT.2014.2346783
|
[16] |
BENDER C M, BOETTCHER S. Real spectra in non-Hermitian Hamiltonians having P T symmetry[J]. Physical Review Letters, 1998, 80(24): 5243-5246. doi: 10.1103/PhysRevLett.80.5243
|
[17] |
ÖZDEMIR Ş K, ROTTER S, NORI F, et al. Parity–time symmetry and exceptional points in photonics[J]. Nature Materials, 2019, 18(8): 783-798. doi: 10.1038/s41563-019-0304-9
|
[18] |
EL-GANAINY R, MAKRIS K G, KHAJAVIKHAN M, et al. Non-Hermitian physics and PT symmetry[J]. Nature Physics, 2018, 14(1): 11-19. doi: 10.1038/nphys4323
|
[19] |
LI P, DAI ZH, FAN ZH Q, et al. Parity–time-symmetric frequency-tunable optoelectronic oscillator with a single dual-polarization optical loop[J]. Optics Letters, 2020, 45(11): 3139-3142. doi: 10.1364/OL.394719
|
[20] |
ZHANG J J, LI L ZH, WANG G Y, et al. Parity-time symmetry in wavelength space within a single spatial resonator[J]. Nature Communications, 2020, 11(1): 3217. doi: 10.1038/s41467-020-16705-8
|
[21] |
ZHANG J J, YAO J P. Parity-time–symmetric optoelectronic oscillator[J]. Science Advances, 2018, 4(6): eaar6782. doi: 10.1126/sciadv.aar6782
|
[22] |
LI L ZH, CAO Y, ZHI Y Y, et al. Polarimetric parity-time symmetry in a photonic system[J]. Light: Science & Applications, 2020, 9: 169.
|
[23] |
ZHU Y Y, ZHAO Y S, FAN J H, et al. Modal gain analysis of parity-time-symmetric distributed feedback lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(5): 1500207.
|
[24] |
DAI ZH, FAN ZH Q, LI P, et al. Widely wavelength-tunable parity-time symmetric single-longitudinal-mode fiber ring laser with a single physical loop[J]. Journal of Lightwave Technology, 2021, 39(7): 2151-2157. doi: 10.1109/JLT.2020.3044067
|
[25] |
LIU Y, WANG L Y, XU X, et al. Narrow linewidth parity-time symmetric Brillouin fiber laser based on a dual-polarization cavity with a single micro-ring resonator[J]. Optics Express, 2022, 30(25): 44545-44555. doi: 10.1364/OE.475957
|
[26] |
LIU Y, WANG L Y, YOU Y J, et al. Single longitudinal mode parity-time symmetric Brillouin fiber laser based on lithium niobate phase modulator sagnac loop[J]. Journal of Lightwave Technology, 2023, 41(5): 1552-1558. doi: 10.1109/JLT.2022.3224208
|
[27] |
LIU Y, GUO R R, ZHAO J J, et al. An EDFA-gain equalizer based on a Sagnac loop with an unpumped erbium-doped fiber[J]. Journal of Lightwave Technology, 2021, 39(13): 4496-4502. doi: 10.1109/JLT.2021.3071422
|
[28] |
MAKRIS K G, EL-GANAINY R, CHRISTODOULIDES D N, et al. Beam dynamics in P T symmetric optical lattices[J]. Physical Review Letters, 2008, 100(10): 103904. doi: 10.1103/PhysRevLett.100.103904
|
[29] |
DEBUT A, RANDOUX S, ZEMMOURI J. Linewidth narrowing in Brillouin lasers: theoretical analysis[J]. Physical Review A, 2000, 62(2): 023803. doi: 10.1103/PhysRevA.62.023803
|
[30] |
POLLNAU M, EICHHORN M. Spectral coherence, Part I: passive-resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation[J]. Progress in Quantum Electronics, 2020, 72: 100255. doi: 10.1016/j.pquantelec.2020.100255
|
[31] |
WANG G M, ZHAN L, LIU J M, et al. Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser[J]. Optics Letters, 2013, 38(1): 19-21. doi: 10.1364/OL.38.000019
|