Citation: | XU Jian-bo, LIU Kai, DONG Xiao-wen, DUAN Xiao-feng, HUANG Yong-qing, WANG Qi, REN Xiao-min. Design of high-speed MUTC-PD with electric field regulation layer[J]. Chinese Optics, 2025, 18(2): 393-400. doi: 10.37188/CO.EN-2024-0030 |
This paper proposes a novel modified uni-traveling-carrier photodiode (MUTC-PD) featuring an electric field regulation layer: a p-type doped thin layer inserted behind the PD’s n-doped cliff layer. This electric field regulation layer enhances the PD’s performance by not only reducing and smoothing the electric field intensity in the collector layer, allowing photo-generated electrons to transit at peak drift velocity, but also improving the electric field intensity in the depleted absorber layer and optimizing the photo-generated carriers’ saturated transit performance. Additionally, the transport characteristics of the peak drift velocity of photogenerated electrons in the device’s collection layer can be used to optimize its parasitic characteristics. The electron’s peak drift velocity compensates for the lost transit time. Thus improving the 3 dB bandwidth of the PD’s photo response. Finally obtains a MUTC-PD with a 3 dB bandwidth of 68 GHz at a responsivity of 0.502 A/W, making it suitable for 100 Gbit/s optical receivers.
[1] |
PAOLUCCI F, SGAMBELLURI A, EMMERICH R, et al. Openconfig control of 100G/400G filterless metro networks with configurable modulation format and FEC[C]. 2019 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2019: 1-3, doi: 10.1364/OFC.2019.Tu3H.4.
|
[2] |
ZHANG K R, HUANG Y Q, DUAN X F. Design and analysis of hybrid integrated high-speed mushroom vertical PIN photodetector[J]. Applied Mechanics and Materials, 2013, 411-414: 1455-1458. doi: 10.4028/www.scientific.net/AMM.411-414.1455
|
[3] |
EFFENBERGER F J, JOSHI A M. Ultrafast, dual-depletion region, InGaAs/InP p-i-n detector[J]. Journal of Lightwave Technology, 1996, 14(8): 1859-1864. doi: 10.1109/50.532024
|
[4] |
KATO K, HATA S, KAWANO K, et al. Design of ultrawide-band, high-sensitivity p-i-n photodetectors[J]. IEICE Transactions on Electronics, 1993, E76-C(2): 214-221.
|
[5] |
LI X, DEMIGUEL S, LI N, et al. Backside illuminated high saturation current partially depleted absorber photodetecters[J]. Electronics Letters, 2003, 39(20): 1466-1467. doi: 10.1049/el:20030927
|
[6] |
ISHIBASHI T, ITO H. Uni-traveling-carrier photodiodes[J]. Journal of Applied Physics, 2020, 127(3): 031101. doi: 10.1063/1.5128444
|
[7] |
LI Q L, LI K J, FU Y, et al. High-power flip-chip bonded photodiode with 110 GHz bandwidth[J]. Journal of Lightwave Technology, 2016, 34(9): 2139-2144. doi: 10.1109/jlt.2016.2520826
|
[8] |
SRIVASTAVA S. Simulation study of InP-based uni-traveling carrier photodiode[D]. Cincinnati: University of Cincinnati, 2003.
|
[9] |
LI J, XIONG B, LUO Y, et al. Ultrafast dual-drifting layer uni-traveling carrier photodiode with high saturation current[J]. Optics Express, 2016, 24(8): 8420-8428. doi: 10.1364/OE.24.008420
|
[10] |
CHAO E F, XIONG B, SUN CH ZH, et al. D-band MUTC photodiodes with flat frequency response[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28(2): 3802208. doi: 10.1109/JSTQE.2021.3115488
|
[11] |
ZHEN ZH, HAO R, XING D, et al. Nearly-ballistic optimization design of high-speed uni-traveling-carrier photodiodes[J]. Chinese Journal of Lasers, 2020, 47(10): 1006003. (in Chinese). doi: 10.3788/CJL202047.1006003
|
[12] |
ADACHI S. Physical Properties of III-V Semiconductor Compounds[M]. New York: John Wiley & Sons, 1992.
|
[13] |
SHRESTHA Y R. Numerical simulation of GaAsSb/InP uni-traveling carrier photodiode[D]. Cincinnati: University of Cincinnati, 2005.
|
[14] |
ISHIBASHI T, FURUTA T, FUSHIMI H, et al. InP/InGaAs uni-traveling-carrier photodiodes[J]. IEICE Transactions on Electronics, 2000, E83-C(6): 938-949.
|
[15] |
FRIESE S. Atlas.ti 8 Mac-user Manual Updated for Program Version 8.4[M]. Berlin: ATLAS.ti, 2019.
|
[16] |
ZHANG P, ZHANG X P, ZHANG R. Design of broadband and high-output power uni-traveling-carrier photodiodes[J]. Optics Communications, 2016, 365: 194-207. doi: 10.1016/j.optcom.2015.11.075
|
[17] |
ZHOU G, RUNGE P. Nonlinearities of high-speed p-i-n photodiodes and MUTC photodiodes[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(6): 2063-2072. doi: 10.1109/TMTT.2016.2645152
|
[18] |
DONG X W, LIU K, HUANG Y Q, et al. Design of high-speed UTC-PD with optimization of its electron transit performance and parasitic capacitance[J]. IEEE Photonics Journal, 2023, 15(1): 1-9. doi: 10.1109/JPHOT.2023.3234063
|
[19] |
SAKAI K, ISHIMURA E, NAKAJI M, et al. High-current back-illuminated partially depleted-absorber p-i-n photodiode with depleted nonabsorbing region[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11): 3154-3160. doi: 10.1109/TMTT.2010.2075470
|