Citation: | ZHAO Meng-yuan, SHEN Jia, PENG Xiao-dong, MA Xiao-shan, YANG Zhen, LIU He-shan, MENG Xin, ZHANG Jia-feng. Analysis of tilt-to-length coupling noise: Exploring the influence of multiple factors in test mass interferometers[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0031 |
For space-borne gravitational wave detection missions based on the heterodyne interferometry principle, tilt-to-length (TTL) coupling noise is an important optical noise source, significantly influencing the accuracy of the measurement system. This paper presents a method for analyzing TTL coupling noise under the joint influence of multiple factors. An equivalent simulated optical bench for the test mass interferometer was designed, and Gaussian beam tracing was adopted to simulate beam propagation. By simulating the interference signal, it can analyze the impact of various factors on the TTL coupling noise, including positional, beam parameters, detector parameters, and signal definition factors. On this basis, a random parameter space composed of multiple influential factors was constructed within a range satisfying the analysis requirement, and the corresponding simulation results from random sampling were evaluated via variance-based global sensitivity analysis. The calculated results of the main and total effect indexes show that the test mass rotation angle and the piston effect -lateral significantly influence the TTL coupling noise in the test mass interferometer. The analysis provides a qualitative reference for designing and optimizing space-borne laser interferometry systems.
[1] |
AMARO-SEOANE P, AUDLEY H, BABAK S, et al. Laser interferometer space antenna[J]. arXiv preprint arXiv: 1702.00786, 2017. (查阅网上资料, 请核对文献类型及格式) .
|
[2] |
LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10.
|
[3] |
LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
|
[4] |
OTTO M. Time-delay interferometry simulations for the laser interferometer space antenna[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015.
|
[5] |
SCHUSTER S, WANNER G, TRÖBS M, et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Applied Optics, 2015, 54(5): 1010-1014. doi: 10.1364/AO.54.001010
|
[6] |
WANG L Y, LI Y Q, CAI R. Noise suppression of tilt-to-length coupling in space laser interferometer[J]. Optics and Precision Engineering, 2021, 29(7): 1491-1498. (in Chinese). doi: 10.37188/OPE.20212907.1491
|
[7] |
CHWALLA M, DANZMANN K, BARRANCO G F, et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Classical and Quantum Gravity, 2016, 33(24): 245015. doi: 10.1088/0264-9381/33/24/245015
|
[8] |
SCHUSTER S. Tilt-to-length coupling and diffraction aspects in satellite interferometry[D]. Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2017.
|
[9] |
HARTIG M S, SCHUSTER S, WANNER G. Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions[J]. Journal of Optics, 2022, 24(6): 065601. doi: 10.1088/2040-8986/ac675e
|
[10] |
HARTIG M S, SCHUSTER S, HEINZEL G, et al. Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions[J]. Journal of Optics, 2023, 25(5): 055601. doi: 10.1088/2040-8986/acc3ac
|
[11] |
ZHAO Y, WANG ZH, LI Y P, et al. Method to remove tilt-to-length coupling caused by interference of flat-top beam and Gaussian beam[J]. Applied Sciences, 2019, 9(19): 4112. doi: 10.3390/app9194112
|
[12] |
WANNER G, SCHUSTER S, TRÖBS M, et al. A brief comparison of optical pathlength difference and various definitions for the interferometric phase[J]. Journal of Physics: Conference Series, 2015, 610: 012043. doi: 10.1088/1742-6596/610/1/012043
|
[13] |
SASSO C P, MANA G, MOTTINI S. Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering wavefronts[J]. Classical and Quantum Gravity, 2018, 35(24): 245002. doi: 10.1088/1361-6382/aaea0f
|
[14] |
ZHAO Y, SHEN J, FANG CH, et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Optics Express, 2020, 28(17): 25545-25561. doi: 10.1364/OE.397097
|
[15] |
ZHAO Y, SHEN J, FANG CH, et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Applied Optics, 2021, 60(2): 438-444. doi: 10.1364/AO.405467
|
[16] |
LI J C, LIN H A, LUO J X, et al. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. (in Chinese). doi: 10.37188/CO.2022-0018
|
[17] |
SCHUSTER S, TRÖBS M, WANNER G, et al. Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system[J]. Optics Express, 2016, 24(10): 10466-10475. doi: 10.1364/OE.24.010466
|
[18] |
WEAVER A J. Investigating limits on gravitational wave detection by laser interferometry using hermite-gauss mode representations of paraxial light propagation[D]. Gainesville: University of Florida, 2021.
|
[19] |
PACZKOWSKI S, GIUSTERI R, HEWITSON M, et al. Postprocessing subtraction of tilt-to-length noise in LISA[J]. Physical Review D, 2022, 106(4): 042005. doi: 10.1103/PhysRevD.106.042005
|
[20] |
HOUBA N, DELCHAMBRE S, ZIEGLER T, et al. Optimal estimation of tilt-to-length noise for spaceborne gravitational-wave observatories[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(6): 1078-1092. doi: 10.2514/1.G006064
|
[21] |
GEORGE D, SANJUAN J, FULDA P, et al. Calculating the precision of tilt-to-length coupling estimation and noise subtraction in LISA using Fisher information[J]. Physical Review D, 2023, 107(2): 022005. doi: 10.1103/PhysRevD.107.022005
|
[22] |
ZHAO M Y, PENG X D, YANG ZH, et al. Preliminary simulation of intersatellite laser interference link for the Taiji program[J]. Journal of Astronomical Telescopes, 2022, 8(3): 038002.
|
[23] |
SOBOL’ I M. On sensitivity estimation for nonlinear mathematical models[J]. Matematicheskoe Modelirovanie, 1990, 2(1): 112-118.
|
[24] |
HOMMA T, SALTELLI A. Importance measures in global sensitivity analysis of nonlinear models[J]. Reliability Engineering & System Safety, 1996, 52(1): 1-17.
|
[25] |
SOBOL’ I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280. doi: 10.1016/S0378-4754(00)00270-6
|
[26] |
SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2): 259-270. doi: 10.1016/j.cpc.2009.09.018
|