Citation: | LI Zhao-hong, HAN De-zhuan. Electromagnetic Bloch-like oscillations in Fibonacci metamaterial waveguide arrays[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0033 |
This paper investigates optical transport in metamaterial waveguide arrays (MMWAs) exhibiting Bloch-like oscillations (BLOs). The MMWAs is fabricated by laterally combining metal and dielectric layers in a Fibonacci sequence. By mapping the field distribution of Gaussian wave packets in these arrays, we directly visualize the mechanical evolution in a classical wave environment. Three distinct oscillation modes are observed at different incident positions in the ninth-generation Fibonacci structure, without introducing thickness or refractive index gradient in any layer. Additionally, the propagation period of BLOs increases with a redshift of the incident wavelength for both ninth- and tenth-generation Fibonacci MMWAs. These findings provide a valuable method for manipulating BLOs and offer new insights into optical transport in metamaterials, with potential applications in optical device and wave control technologies.
[1] |
BLOCH F. Über die quantenmechanik der elektronen in kristallgittern[J]. Zeitschrift für Physik, 1929, 52(7): 555-600.
|
[2] |
FELDMANN J, LEO K, SHAH J, et al. Optical investigation of Bloch oscillations in a semiconductor superlattice[J]. Physical Review B, 1992, 46(11): 7252-7255. doi: 10.1103/PhysRevB.46.7252
|
[3] |
MORANDOTTI R, PESCHEL U, AITCHISON J S, et al. Experimental observation of linear and nonlinear optical bloch oscillations[J]. Physical Review Letters, 1999, 83(23): 4756-4759. doi: 10.1103/PhysRevLett.83.4756
|
[4] |
DENG M, COTRUFO M, WANG J, et al. Broadband angular spectrum differentiation using dielectric metasurfaces[J]. Nature Communications, 2024, 15(1): 2237. doi: 10.1038/s41467-024-46537-9
|
[5] |
HUANG ZH R, ZHENG Y Q, LI J H, et al. High-resolution metalens imaging polarimetry[J]. Nano Letters, 2023, 23(23): 10991-10997. doi: 10.1021/acs.nanolett.3c03258
|
[6] |
DENG M, COTRUFO M, WANG J, et al. Broadband angular spectrum differentiation using dielectric metasurfaces[J]. Nature Communications, 2024, 15(1): 2237. .
|
[7] |
LENZ G, TALANINA I, DE STERKE C M. Bloch oscillations in an array of curved optical waveguides[J]. Physical Review Letters, 1999, 83(5): 963-966. doi: 10.1103/PhysRevLett.83.963
|
[8] |
BREID B M, WITTHAUT D, KORSCH H J. Bloch-Zener oscillations[J]. New Journal of Physics, 2006, 8: 110. doi: 10.1088/1367-2630/8/7/110
|
[9] |
BLOCK A, ETRICH C, LIMBOECK T, et al. Bloch oscillations in plasmonic waveguide arrays[J]. Nature Communications, 2014, 5(1): 3483. doi: 10.1038/ncomms4483
|
[10] |
WETTER H, FEDOROVA Z, LINDEN S. Observation of the Wannier–Stark ladder in plasmonic waveguide arrays[J]. Optics Letters, 2022, 47(12): 3091-3094. doi: 10.1364/OL.458954
|
[11] |
ZHAO Y, CHEN Y, HOU ZH SH, et al. Polarization-dependent Bloch oscillations in optical waveguides[J]. Optics Letters, 2022, 47(3): 617-620. doi: 10.1364/OL.448090
|
[12] |
LI J H, HU G W, SHI L N, et al. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials[J]. Nature Communications, 2021, 12(1): 6425. doi: 10.1038/s41467-021-26818-3
|
[13] |
KHAN N, WANG P, FU Q D, et al. Observation of period-doubling Bloch oscillations[J]. Physical Review Letters, 2024, 132(5): 053801. doi: 10.1103/PhysRevLett.132.053801
|
[14] |
ZHANG ZH, LI Y, CHEN CH H, et al. Polychromatic photonic Floquet-Bloch oscillations[J]. Optics Express, 2024, 32(6): 10703-10714. doi: 10.1364/OE.519007
|
[15] |
SANCHIS-ALEPUZ H, KOSEVICH Y A, SÁNCHEZ-DEHESA J. Acoustic analogue of electronic Bloch oscillations and resonant Zener tunneling in ultrasonic superlattices[J]. Physical Review Letters, 2007, 98(13): 134301. doi: 10.1103/PhysRevLett.98.134301
|
[16] |
NATALE G, BLAND T, GSCHWENDTNER S, et al. Bloch oscillations and matter-wave localization of a dipolar quantum gas in a one-dimensional lattice[J]. Communications Physics, 2022, 5(1): 227. doi: 10.1038/s42005-022-01009-8
|
[17] |
ZHANG W X, YUAN H, WANG H T, et al. Observation of Bloch oscillations dominated by effective anyonic particle statistics[J]. Nature Communications, 2022, 13(1): 2392. doi: 10.1038/s41467-022-29895-0
|
[18] |
PRADHAN S K, XIAO B, SKUZA J R, et al. Effects of dielectric thickness on optical behavior and tunability of one-dimensional Ag/SiO2 multilayered metamaterials[J]. Optics Express, 2014, 22(10): 12486-12498. doi: 10.1364/OE.22.012486
|
[19] |
MAIER S A, BRONGERSMA M L, KIK P G, et al. Plasmonics—a route to nanoscale optical devices[J]. Advanced Materials, 2001, 13(19): 1501-1505. doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
|
[20] |
ZHANG J X, ZHANG L D, XU W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D: Applied Physics, 2012, 45(11): 113001. doi: 10.1088/0022-3727/45/11/113001
|
[21] |
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849
|
[22] |
ZHOU Y, LIU Q, WANG CH K, et al. Trapping effect and trajectory control of surface plasmon polaritons in a metal-dielectric-metal waveguide[J]. Physical Review A, 2020, 102(6): 063516. doi: 10.1103/PhysRevA.102.063516
|
[23] |
LIN W H, CHEN Y F, WANG W J. Array periodical nanofocusing effect in nanoscale three-dimensional surface plasmon polariton waveguide arrays[J]. Journal of the Optical Society of America B, 2020, 37(3): 762-766. doi: 10.1364/JOSAB.384450
|
[24] |
LIN W H, WANG W J. The spatial plasmonic Bloch oscillations in nanoscale three-dimensional surface plasmon polaritons metal waveguide arrays[J]. Optics Express, 2019, 27(17): 24591-24600. doi: 10.1364/OE.27.024591
|
[25] |
DAVOYAN A R, SHADRIVOV I V, SUKHORUKOV A A, et al. Plasmonic Bloch oscillations in chirped metal-dielectric structures[J]. Applied Physics Letters, 2009, 94(16): 161105. doi: 10.1063/1.3119666
|
[26] |
MEDINA-MAGALLÓN J E, PÉREZ-AGUILAR H, ZHEVANDROV-BOLSHAKOVA P, et al. Excitation of surface plasmon polaritons in photonic crystal waveguides that involve dispersive metamaterial[J]. Journal of Physics: Conference Series, 2019, 1221: 012010. doi: 10.1088/1742-6596/1221/1/012010
|
[27] |
LI ZH H, PANG X N, DONG J W, et al. Electromagnetic Bloch-like oscillations in one-dimensional quasicrystal consisting of negative permeability metamaterial[J]. Europhysics Letters, 2011, 95(3): 36004. doi: 10.1209/0295-5075/95/36004
|
[28] |
VASCONCELOS M S, ALBUQUERQUE E L. Plasmon-polariton fractal spectra in quasiperiodic multilayers[J]. Physical Review B, 1998, 57(5): 2826-2833. doi: 10.1103/PhysRevB.57.2826
|
[29] |
RAETHER H. Surface plasmons on smooth surfaces[M]//RAETHER H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin, Heidelberg: Springer, 1988: 4-39.
|
[30] |
LOURENÇO P, FANTONI A, FERNANDES M, et al. FDTD analysis of Aluminum/a-Si: H surface plasmon waveguides[J]. Proceedings of SPIE, 2018, 10526: 105262D.
|
[31] |
VERSLEGERS L, CATRYSSE P B, YU Z F, et al. Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array[J]. Physical Review Letters, 2009, 103(3): 033902. doi: 10.1103/PhysRevLett.103.033902
|
[32] |
MALPUECH G, KAVOKIN A, PANZARINI G, et al. Theory of photon Bloch oscillations in photonic crystals[J]. Physical Review B, 2001, 63(3): 035108. doi: 10.1103/PhysRevB.63.035108
|