Citation: | WANG Jiangpuzhen, WANG Zhiqiang, ZHANG Jinghui, QIAO Chunhong, FAN Chengyu. Influencing factor analysis of the Principal Component Analysis for the characterization and restoration of phase aberrations resulting from atmospheric turbulence[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0035 |
Restoration of phase aberrations is crucial for addressing atmospheric turbulence in light propagation. Traditional restoration algorithms based on Zernike polynomials (ZPs) often encounter challenges related to high computational complexity and insufficient capture of high-frequency phase aberration components, so we proposed a Principal-Component-Analysis-based method for representing phase aberrations. This paper discusses factors influencing the accuracy of restoration using Principal Components (PCs), mainly sample space size and the sampling interval of
[1] |
MAHAJAN V N. Aberrations of diffracted wave fields. I. Optical imaging[J]. Journal of the Optical Society of America A, 2000, 17(12): 2216-2222. doi: 10.1364/JOSAA.17.002216
|
[2] |
ANGEL J R P, WIZINOWICH P, LLOYD-HART M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 1990, 348(6298): 221-224. doi: 10.1038/348221a0
|
[3] |
SANDLER D G, BARRETT T K, PALMER D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 1991, 351(6324): 300-302. doi: 10.1038/351300a0
|
[4] |
JIA P, MA M Y, CAI D M, et al. Compressive Shack–Hartmann wavefront sensor based on deep neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(3): 3194-3203. doi: 10.1093/mnras/staa4045
|
[5] |
HARTLIEB S, WANG ZH, RÜDINGER A, et al. Large dynamic range Shack–Hartmann wavefront sensor based on holographic multipoint generation and pattern correlation[J]. Optical Engineering, 2024, 63(2): 024107.
|
[6] |
VOLKOV M V, BOGACHEV V A, STARIKOV F A, et al. Numerical study of dynamic adaptive phase correction of radiation turbulent distortions and estimation of their frequency bandwidth with a Shack–Hartmann wavefront sensor[J]. Atmospheric and Oceanic Optics, 2022, 35(3): 250-257. doi: 10.1134/S1024856022030174
|
[7] |
LI P, TANG F, WANG X ZH. Relationship between shear ratio and reconstruction accuracy in lateral shearing interferometry[J]. Optical Engineering, 2020, 59(3): 034113.
|
[8] |
SONG J W, MIN J W, YUAN X, et al. Quadriwave lateral shearing interferometry quantitative phase imaging based on 2D Ronchi phase grating[J]. Acta Photonica Sinica, 2022, 51(11): 1118001. (in Chinese). doi: 10.3788/gzxb20225111.1118001
|
[9] |
SINHA A, LEE J, LI SH, et al. Lensless computational imaging through deep learning[J]. Optica, 2017, 4(9): 1117-1125. doi: 10.1364/OPTICA.4.001117
|
[10] |
CHEN M A, JIN X Q, LI SH B, et al. Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems[J]. Chinese Optics Letters, 2021, 19(11): 110601. doi: 10.3788/COL202119.110601
|
[11] |
LOHANI S, GLASSER R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 2018, 43(11): 2611-2614. doi: 10.1364/OL.43.002611
|
[12] |
GUO Y M, ZHONG L B, MIN L, et al. Adaptive optics based on machine learning: a review[J]. Opto-Electronic Advances, 2022, 5(7): 200082. doi: 10.29026/oea.2022.200082
|
[13] |
PAINE S W, FIENUP J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018, 43(6): 1235-1238. doi: 10.1364/OL.43.001235
|
[14] |
NISHIZAKI Y, VALDIVIA M, HORISAKI R, et al. Deep learning wavefront sensing[J]. Optics Express, 2019, 27(1): 240-251. doi: 10.1364/OE.27.000240
|
[15] |
GE X L, ZHU L CH, GAO Z Y, et al. Experimental demonstration of wavefront reconstruction and correction techniques for variable targets based on distorted grating and deep learning[J]. Optics Express, 2024, 32(10): 17775-17792. doi: 10.1364/OE.519163
|
[16] |
WANG Q T, TONG SH F, XU Y H. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[J]. Infrared and Laser Engineering, 2013, 42(7): 1907-1911. (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.046
|
[17] |
SIDDIK A B, SANDOVAL S, VOELZ D, et al. Deep learning estimation of modified Zernike coefficients and recovery of point spread functions in turbulence[J]. Optics Express, 2023, 31(14): 22903-22913. doi: 10.1364/OE.493229
|
[18] |
LV H L, FU SH J, ZHANG C M, et al. Speckle noise reduction of multi-frame optical coherence tomography data using multi-linear principal component analysis[J]. Optics Express, 2018, 26(9): 11804-11818. doi: 10.1364/OE.26.011804
|
[19] |
ZHANG Q, XIAO G, LAN Y Q, et al. Atmospheric turbulence detection by PCA approach[J]. Aerospace Systems, 2019, 2(1): 15-20. doi: 10.1007/s42401-018-0012-1
|
[20] |
TERRERI A, PEDICHINI F, DEL MORO D, et al. Neural networks and PCA coefficients to identify and correct aberrations in adaptive optics[J]. Astronomy & Astrophysics, 2022, 666: A70.
|
[21] |
SCHMIDT J D. Numerical Simulation of Optical Wave Propagation with Examples in MATLAB[M]. Bellingham: SPIE, 2010.
|
[22] |
NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
|
[23] |
LANE R G, GLINDEMANN A, DAINTY J C. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209-224. doi: 10.1088/0959-7174/2/3/003
|