Citation: | ZHANG Hui-yun, HAO Xiao-yu, ZHENG Si-yu, WANG Yu, LIU Yang, LIU Meng, ZHANG Jin-juan, ZHANG Yuping. Tunable reflective spin-decoupled encoding metasurface based on Dirac semimetals[J]. Chinese Optics. doi: 10.37188/CO.EN-2024-0037 |
Multiple functional metasurfaces with high information capacity have attracted considerable attention from researchers. This study proposes a 2-bit tunable decoupled coded metasurface designed for the terahertz band, which utilizes the tunable properties of Dirac semimetals (DSM) to create a novel multilayer structure. By incorporating both geometric and propagating phases into the metasurface design, we can effectively control the electromagnetic wave. When the Fermi energy level of the DSM is set at 6 meV, the electromagnetic wave is manipulated by the DSM patch to operate at a frequency of 1.3 THz. Conversely, at a Fermi energy level of 80 meV, the electromagnetic wave is similarly controlled to function at a frequency of 1.4 THz. Both modes enable independent control of beam splitting under left-rotating circularly polarized (LCP) and right-rotating circularly polarized (RCP) wave excitation, resulting in the generation of vortex beams with distinct orbital angular momentum (OAM) modes. The findings of this study hold significant potential for enhancing information capacity and polarization multiplexing techniques in wireless communications.
[1] |
WANG M T, LIAO D SH, DAI J Y, et al. Dual-polarized reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4539-4548. doi: 10.1109/TAP.2022.3140506
|
[2] |
LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201, doi: 10.1007/s11433-015-5688-1.
|
[3] |
HUANG CH, PAN W B, MA X L, et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Scientific Reports, 2016, 6: 23291. doi: 10.1038/srep23291
|
[4] |
LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
|
[5] |
LI ZH Y, LI S J, HAN B W, et al. Quad-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously[J]. Advanced Theory and Simulations, 2021, 4(8): 2100117. doi: 10.1002/adts.202100117
|
[6] |
XING W T, SI L M, DONG L, et al. Rapid design of hybrid mechanism metasurface with random coding for terahertz dual-band RCS reduction[J]. Optics Express, 2023, 31(17): 28444-28458. doi: 10.1364/OE.496423
|
[7] |
YUAN Y Y, ZHANG K, RATNI B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11(1): 4186. doi: 10.1038/s41467-020-17773-6
|
[8] |
LI S J, LI ZH Y, HUANG G SH, et al. Digital coding transmissive metasurface for multi-OAM-beam[J]. Frontiers of Physics, 2022, 17(6): 62501. doi: 10.1007/s11467-022-1179-9
|
[9] |
CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics[J]. Nature Communications, 2019, 10(1): 2518. doi: 10.1038/s41467-019-10538-w
|
[10] |
CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218, doi: 10.1038/lsa.2014.99.
|
[11] |
ZHANG ZH X, GAO L. 2-bit coding metasurface with a double layer random flip structure for wide band diffuse reflection and reciprocity protected transmission[J]. Optics Express, 2023, 31(20): 32253-32262. doi: 10.1364/OE.501272
|
[12] |
LIU SH, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076, doi: 10.1038/lsa.2016.76.
|
[13] |
ZHANG L, LIU SH, LI L L, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447-36455. doi: 10.1021/acsami.7b12468
|
[14] |
CHENG G, SI L M, SHEN Q T, et al. Transmissive Pancharatnam-Berry metasurfaces with stable amplitude and precise phase modulations using dartboard discretization configuration[J]. Optics Express, 2023, 31(19): 30815-30831. doi: 10.1364/OE.501702
|
[15] |
CHONG A, WAN CH H, CHEN J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-354. doi: 10.1038/s41566-020-0587-z
|
[16] |
GUO Y H, ZHANG SH C, PU M B, et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation[J]. Light: Science & Applications, 2021, 10(1): 63, doi: 10.1038/s41377-021-00497-7.
|
[17] |
ZHANG K, YUAN Y Y, DING X M, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423-28430. doi: 10.1021/acsami.9b07102
|
[18] |
LI J SH, CHEN J ZH. Simultaneous and independent regulation of circularly polarized terahertz wave based on metasurface[J]. Optics Express, 2022, 30(12): 20298-20310. doi: 10.1364/OE.458810
|
[19] |
WANG F, ZHANG Y B, TIAN CH SH, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209. doi: 10.1126/science.1152793
|
[20] |
IYER P P, PENDHARKAR M, SCHULLER J A. Electrically reconfigurable metasurfaces using heterojunction resonators[J]. Advanced Optical Materials, 2016, 4(10): 1582-1588. doi: 10.1002/adom.201600297
|
[21] |
DU ZH Q, HE C H, XIN J H, et al. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface[J]. Optics Express, 2024, 32(1): 248-259. doi: 10.1364/OE.510046
|
[22] |
ZHANG Y P, JIANG CH Y, LI ZH K, et al. Circularly polarized terahertz wave independently controlled tunable spin-decoupled metasurface[J]. Results in Physics, 2024, 56: 107287. doi: 10.1016/j.rinp.2023.107287
|
[23] |
CUI T J, LI L L, LIU SH, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
|
[24] |
XU J SH, LIU W W, SONG ZH Y. Terahertz dynamic beam steering based on graphene coding metasurfaces[J]. IEEE Photonics Journal, 2021, 13(4): 4600409. doi: 10.1109/JPHOT.2021.3098728
|
[25] |
MA H R, YANG J J, CHEN T T, et al. Tunable metasurface for independent controlling radar stealth properties via geometric and propagation phase modulation[J]. Optics Express, 2023, 31(7): 11760-11774. doi: 10.1364/OE.485132
|
[26] |
DING G W, CHEN K, LUO X Y, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043. doi: 10.1103/PhysRevApplied.11.044043
|
[27] |
KOTOV O V, LOZOVIK Y E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films[J]. Physical Review B, 2016, 93(23): 235417. doi: 10.1103/PhysRevB.93.235417
|
[28] |
JIANG CH Y, LI ZH K, LV X Y, et al. Active modulation of terahertz vortex beams by Dirac semimetals-based space-time-coding metasurface[J]. Optics Communications, 2023, 540: 129506. doi: 10.1016/j.optcom.2023.129506
|
[29] |
XIN J H, DU ZH Q, ZHOU Z K, et al. Optical reflective metasurfaces enable spin-decoupled OAM and focusing[J]. Physical Chemistry Chemical Physics, 2023, 25(40): 27008-27016. doi: 10.1039/d3cp02321d
|
[30] |
HE C H, PAN Z M, SONG ZH Y. Manipulating spin-dependent wavefronts of vortex beams via plasmonic metasurfaces[J]. Annalen der Physik, 2023, 535(10): 2300235. doi: 10.1002/andp.202300235
|