Citation: | WANG Yu, LIU Yang, HAO Xiao-yu, ZHENG Si-yu, LIU Meng, ZHANG Yu-ping, ZHAN Yi, ZHANG Hui-yun. Independent dual-band bound states in the continuum based on terahertz all-dielectric metasurfaces[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0004 |
Compared to traditional single-frequency bound states in the continuum (BIC), dual-band BIC offers higher degrees of freedom and functionality. Therefore, implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance. This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz (THz) range. By adjusting two asymmetry parameters of the structure, independent control of the two symmetry-protected BICs is achieved. Furthermore, by varying the shape of the silicon holes, the design's robustness to geometric variations is demonstrated. Finally, the test results show that the figures of merit (FOMs) for both BICs reach 109. This work provides a new approach for realizing and tuning dual-frequency BICs, offering expanded possibilities for applications in multimode lasers, nonlinear optics, multi-channel filtering, and optical sensing.
[1] |
HSU C W, ZHEN B, LEE J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188-191. doi: 10.1038/nature12289
|
[2] |
HSU C W, ZHEN B, STONE A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1(9): 16048. doi: 10.1038/natrevmats.2016.48
|
[3] |
LEITIS A, TITTL A, LIU M K, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 2019, 5(5): eaaw2871. doi: 10.1126/sciadv.aaw2871
|
[4] |
KOSHELEV K, LEPESHOV S, LIU M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018, 121(19): 193903. doi: 10.1103/PhysRevLett.121.193903
|
[5] |
YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396. doi: 10.1038/s41566-019-0394-6
|
[6] |
ROMANO S, ZITO G, TORINO S, et al. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum[J]. Photonics Research, 2018, 6(7): 726-733. doi: 10.1364/PRJ.6.000726
|
[7] |
LIU Y H, ZHOU W D, SUN Y Z. Optical refractive index sensing based on high-q bound states in the continuum in free-space coupled photonic crystal slabs[J]. Sensors, 2017, 17(8): 1861. doi: 10.3390/s17081861
|
[8] |
ZITO G, SANITÀ G, ALULEMA B G, et al. Label-free DNA biosensing by topological light confinement[J]. Nanophotonics, 2021, 10(17): 4279-4287. doi: 10.1515/nanoph-2021-0396
|
[9] |
WANG J, KÜHNE J, KARAMANOS T, et al. All-dielectric crescent metasurface sensor driven by bound states in the continuum[J]. Advanced Functional Materials, 2021, 31(46): 2104652. doi: 10.1002/adfm.202104652
|
[10] |
YIN W, SHEN ZH L, LI SH N, et al. THz absorbers with an ultrahigh Q-factor empowered by the quasi-bound states in the continuum for sensing application[J]. Optics Express, 2022, 30(18): 32162-32173. doi: 10.1364/OE.469962
|
[11] |
WANG X, DUAN J Y, CHEN W Y, et al. Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance[J]. Physical Review B, 2020, 102(15): 155432. doi: 10.1103/PhysRevB.102.155432
|
[12] |
WU J J, XU X T, SU X Q, et al. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum[J]. Physical Review Applied, 2021, 16(6): 064018. doi: 10.1103/PhysRevApplied.16.064018
|
[13] |
HAN ZH H, CAI Y J. All-optical self-switching with ultralow incident laser intensity assisted by a bound state in the continuum[J]. Optics Letters, 2021, 46(3): 524-527. doi: 10.1364/OL.415531
|
[14] |
GORKUNOV M V, ANTONOV A A, KIVSHAR Y S. Metasurfaces with maximum chirality empowered by bound states in the continuum[J]. Physical Review Letters, 2020, 125(9): 093903. doi: 10.1103/PhysRevLett.125.093903
|
[15] |
CHEN Y, DENG H C, SHA X B, et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 2023, 613(7944): 474-478. doi: 10.1038/s41586-022-05467-6
|
[16] |
KUZNETSOV A I, MIROSHNICHENKO A E, BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): aag2472. doi: 10.1126/science.aag2472
|
[17] |
JAHANI S, JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36. doi: 10.1038/nnano.2015.304
|
[18] |
GINN J C, BRENER I, PETERS D W, et al. Realizing optical magnetism from dielectric metamaterials[J]. Physical Review Letters, 2012, 108(9): 097402. doi: 10.1103/PhysRevLett.108.097402
|
[19] |
ALGORRI J F, DELL’OLIO F, ROLDÁN-VARONA P, et al. Strongly resonant silicon slot metasurfaces with symmetry-protected bound states in the continuum[J]. Optics Express, 2021, 29(7): 10374-10385. doi: 10.1364/OE.415377
|
[20] |
ABUJETAS D R, SÁNCHEZ-GIL J A. Near-field excitation of bound states in the continuum in all-dielectric metasurfaces through a coupled electric/magnetic dipole model[J]. Nanomaterials, 2021, 11(4): 998. doi: 10.3390/nano11040998
|
[21] |
ZHU J, DENG J H, XIONG H, et al. Triband metamaterial absorber based on a three-ring coupled structure[J]. ACS Applied Electronic Materials, 2024, 6(12): 9184-9193. doi: 10.1021/acsaelm.4c01813
|
[22] |
XIONG H, YANG Q, HUANG Y ZH, et al. High-efficiency microwave wireless power transmission via reflective phase gradient metasurfaces and surface wave aggregation[J]. ACS Applied Materials & Interfaces, 2024, 16(44): 60189-60196.
|
[23] |
KARAGODSKY V, SEDGWICK F G, CHANG-HASNAIN C J. Theoretical analysis of subwavelength high contrast grating reflectors[J]. Optics Express, 2010, 18(16): 16973-16988. doi: 10.1364/OE.18.016973
|
[24] |
KARAGODSKY V, CHANG-HASNAIN C J. Physics of near-wavelength high contrast gratings[J]. Optics Express, 2012, 20(10): 10888-10895. doi: 10.1364/OE.20.010888
|
[25] |
TAN T C, SRIVASTAVA Y K, AKO R T, et al. Active control of nanodielectric-induced THz quasi-BIC in flexible metasurfaces: a platform for modulation and sensing[J]. Advanced Materials, 2021, 33(27): 2100836. doi: 10.1002/adma.202100836
|
[26] |
ABUJETAS D R, VAN HOOF N, TER HUURNE S, et al. Spectral and temporal evidence of robust photonic bound states in the continuum on terahertz metasurfaces[J]. Optica, 2019, 6(8): 996-1001. doi: 10.1364/OPTICA.6.000996
|
[27] |
TAN T C W, PLUM E, SINGH R. Lattice-enhanced Fano resonances from bound states in the continuum metasurfaces[J]. Advanced Optical Materials, 2020, 8(6): 1901572. doi: 10.1002/adom.201901572
|
[28] |
VAN HOOF N J J, ABUJETAS D R, TER HUURNE S E T, et al. Unveiling the symmetry protection of bound states in the continuum with terahertz near-field imaging[J]. ACS Photonics, 2021, 8(10): 3010-3016. doi: 10.1021/acsphotonics.1c00937
|
[29] |
CERJAN A, JÖRG C, VAIDYA S, et al. Observation of bound states in the continuum embedded in symmetry bandgaps[J]. Science Advances, 2021, 7(52): eabk1117. doi: 10.1126/sciadv.abk1117
|
[30] |
LI S, MA B Z, LI Q, et al. Antenna-based approach to fine control of supercavity mode quality factor in metasurfaces[J]. Nano Letters, 2023, 23(14): 6399-6405. doi: 10.1021/acs.nanolett.3c01141
|
[31] |
ZHONG H K, HE T T, WANG Y H, et al. Efficient polarization-insensitive quasi-BIC modulation by VO2 thin films[J]. Optics Express, 2024, 32(4): 5862-5873. doi: 10.1364/OE.515896
|
[32] |
GE J Y, GAO Y X, XU L, et al. Dual-symmetry-perturbed all-dielectric resonant metasurfaces for high-Q perfect light absorption[J]. Chinese Optics Letters, 2024, 22(2): 023602. doi: 10.3788/COL202422.023602
|
[33] |
LUO X Q, ZHOU Y J, LIU Q K, et al. Customizable dual-resonance sensing empowered by coupled quasi-bound states in the continuum[J]. Optics & Laser Technology, 2025, 180: 111544.
|
[34] |
MI Q, SANG T, PEI Y, et al. High-quality-factor dual-band Fano resonances induced by dual bound states in the continuum using a planar nanohole slab[J]. Nanoscale Research Letters, 2021, 16(1): 150. doi: 10.1186/s11671-021-03607-x
|
[35] |
DU X, XIONG L, ZHAO X Q, et al. Dual-band bound states in the continuum based on hybridization of surface lattice resonances[J]. Nanophotonics, 2022, 11(21): 4843-4853. doi: 10.1515/nanoph-2022-0427
|
[36] |
DING J F, HUANG L R, LUO Y, et al. Multi-band polarization-independent quasi-bound states in the continuum based on tetramer-based metasurfaces and their potential application in terahertz microfluidic biosensing[J]. Advanced Optical Materials, 2023, 11(20): 2300685. doi: 10.1002/adom.202300685
|
[37] |
ZHANG S B, ZONG M X, LIU Y Q, et al. Independent dual-band bound states in the continuum supported by double asymmetric periodic gratings in germanium-based structure[J]. Laser & Photonics Reviews, 2024, 18(4): 2301206.
|
[38] |
KAELBERER T, FEDOTOV V A, PAPASIMAKIS N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010): 1510-1512. doi: 10.1126/science.1197172
|
[39] |
ZHAO CH X, LIU J N, LI B Q, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc–air batteries[J]. Advanced Functional Materials, 2020, 30(36): 2003619. doi: 10.1002/adfm.202003619
|
[40] |
BOLIVAR P H, BRUCHERSEIFER M, NAGEL M, et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing[C]. Optics and Photonics, Optica Publishing Group, 2000: 253-258.
|
[41] |
HO L, PEPPER M, TADAY P. Signatures and fingerprints[J]. Nature Photonics, 2008, 2(9): 541-543. doi: 10.1038/nphoton.2008.174
|
[42] |
CHEN X, FAN W H. Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon[J]. Scientific Reports, 2017, 7(1): 2092. doi: 10.1038/s41598-017-01781-6
|