Turn off MathJax
Article Contents
LI Qian, YAO Peng, DENG Hong-xing, FENG Chen-yu, XU Chong-hai, QU Shuo-shuo, YANG Yu-ying, ZHU Hong-tao, HUANG Chuan-zhen. Multi-objective parameter optimization of abrasive water jet polishing for fused silica[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0006
Citation: LI Qian, YAO Peng, DENG Hong-xing, FENG Chen-yu, XU Chong-hai, QU Shuo-shuo, YANG Yu-ying, ZHU Hong-tao, HUANG Chuan-zhen. Multi-objective parameter optimization of abrasive water jet polishing for fused silica[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0006

Multi-objective parameter optimization of abrasive water jet polishing for fused silica

cstr: 32171.14.CO.EN-2025-0006
Funds:  Supported by National Key Research and Development Program of China (No. 2023YFC2413301); National Natural Science Foundation of China (No. U23A20632); Major Basic Research of Shandong Provincial Natural Science Foundation (No. ZR2023ZD34)
More Information
  • Author Bio:

    LI Qian (1993—), female, born in Jinan, Shandong Province. She obtained her bachelor's degree from Dezhou University in 2017. Currently, she is a postgraduate jointly cultivated by the School of Mechanical Engineering of Qilu University of Technology and the School of Mechanical Engineering of Shandong University. Her main research directions are ultra-precision machining and abrasive water jet polishing technology. E-mail: qluliqian@163.com

    YAO Peng (1979—), male, born in Dalian, Liaoning Province, PhD, Professor, Doctoral Supervisor. He received his doctoral degree from Northeastern University (Japan) in 2011, Mainly engaged in research on grinding and ultra precision machining technology, multi energy field composite precision machining technology, and laser micro/nano machining technology. E-mail: yaopeng@sdu.edu.cn

  • Corresponding author: yaopeng@sdu.edu.cn
  • Received Date: 08 Feb 2025
  • Accepted Date: 17 Apr 2025
  • Available Online: 16 Jul 2025
  • As a non-contact ultra-precision machining method, abrasive water jet polishing (AWJP) has significant application in optical elements processing due to its stable tool influence function (TIF), no subsurface damage and strong adaptability to workpiece shapes. In this study, the effects of jet pressure, nozzle diameter and impinging angle on the distribution of pressure, velocity and wall shear stress in the polishing flow field were systematically analyzed by computational fluid dynamics (CFD) simulation. Based on the Box-Behnken experimental design, a response surface regression model was constructed to investigate the influence mechanism of process parameters on material removal rate (MRR) and surface roughness (Ra) of fused silica. And experimental results showed that increasing jet pressure and nozzle diameter significantly improved MRR, consistent with shear stress distribution revealed by CFD simulations. However, increasing jet pressure and impinging angle caused higher Ra values, which was unfavorable for surface quality improvement. Genetic algorithm (GA) was used for multi-objective optimization to establish Pareto solutions, achieving concurrent optimization of polishing efficiency and surface quality. A parameter combination of 2 MPa jet pressure, 0.3 mm nozzle diameter, and 30° impinging angle achieved MRR of 169.05 μm³/s and Ra of 0.50 nm. Experimental verification showed prediction errors of 4.4% (MRR) and 3.8% (Ra), confirming model reliability. This parameter optimization system provides theoretical basis and technical support for ultra-precision polishing of complex curved optical components.

     

  • loading
  • [1]
    ZHANG H L, LIU H, XU W B, et al. Large aperture diffractive optical telescope: a review[J]. Optics & Laser Technology, 2020, 130: 106356.
    [2]
    WANG H, ZHAO K, SHEN H, et al. Experimental study on direct fabrication of micro channel on fused silica by picosecond laser[J]. Journal of Manufacturing Processes, 2020, 55: 87-95. doi: 10.1016/j.jmapro.2020.03.057
    [3]
    RASHEED I A, CHHABRA I M, GUPTA M K, et al. Surface preparation and analysis on fused silica glass substrate with deterministic grinding method[J]. Materials Today: Proceedings, 2021, 46: 8239-8247. doi: 10.1016/j.matpr.2021.03.221
    [4]
    ZHAO J, HUANG J F, WANG R, et al. Investigation of the optimal parameters for the surface finish of K9 optical glass using a soft abrasive rotary flow polishing process[J]. Journal of Manufacturing Processes, 2020, 49: 26-34. doi: 10.1016/j.jmapro.2019.11.011
    [5]
    CAO ZH CH, WANG M, YAN SH Q, et al. Surface integrity and material removal mechanism in fluid jet polishing of optical glass[J]. Journal of Materials Processing Technology, 2023, 311: 117798. doi: 10.1016/j.jmatprotec.2022.117798
    [6]
    CAO ZH CH, WANG M, LIU H T, et al. Modeling and analysis for material removal and surface roughness in fluid jet polishing of optical glass[J]. Friction, 2024, 12(7): 1548-1563. doi: 10.1007/s40544-023-0832-9
    [7]
    WANG C J, CHEUNG C F, LIU M Y. Numerical modeling and experimentation of three dimensional material removal characteristics in fluid jet polishing[J]. International Journal of Mechanical Sciences, 2017, 133: 568-577. doi: 10.1016/j.ijmecsci.2017.09.018
    [8]
    CARON J, BAUMER S. Progress in freeform mirror design for space applications[J]. Proceedings of SPIE, 2021, 11852: 118521S.
    [9]
    YANG ZH CH, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594. doi: 10.1016/j.ijmachtools.2020.103594
    [10]
    KUMAR S, TONG ZH, JIANG X Q. Advances in the design and manufacturing of novel freeform optics[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 032004. doi: 10.1088/2631-7990/ac7617
    [11]
    WAN S L, WEI CH Y, HU CH, et al. Novel magic angle-step state and mechanism for restraining the path ripple of magnetorheological finishing[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103673. doi: 10.1016/j.ijmachtools.2020.103673
    [12]
    FÄHNLE O W, VAN BRUG H, FRANKENA H J. Fluid jet polishing of optical surfaces[J]. Applied Optics, 1998, 37(28): 6771-6773. doi: 10.1364/AO.37.006771
    [13]
    FÄHNLE O W. Shaping and finishing of aspherical optics L surfaces[D]. Delft: Delft University of Technology, 1998.
    [14]
    FÄHNLE O W, HAUSER K. Abrasive jet polishing approaches to the manufacture of micro-optics with complex shapes[C]. Optical Fabrication and Testing 2012, Optica Publishing Group, 2012. (查阅网上资料, 未找到本条文献页码, 请确认).
    [15]
    FAEHNLE O, DOETZ M, DAMBON O. Analysis of critical process parameters of ductile mode grinding of brittle materials[J]. Advanced Optical Technologies, 2017, 6(5): 349-358. doi: 10.1515/aot-2017-0045
    [16]
    ZHANG L, DING CH, HAN Y J, et al. Investigation into a novel pulsating cavitation air jet polishing method for Ti-6Al-4V alloy[J]. Tribology International, 2022, 175: 107837. doi: 10.1016/j.triboint.2022.107837
    [17]
    CHEN F J, MIAO X L, TANG Y, et al. A review on recent advances in machining methods based on abrasive jet polishing (AJP)[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 785-799. doi: 10.1007/s00170-016-9405-7
    [18]
    PAWLUS P, REIZER R, KROLCZYK G M. Modelling and prediction of surface textures after abrasive machining processes: a review[J]. Measurement, 2023, 220: 113337. doi: 10.1016/j.measurement.2023.113337
    [19]
    ZHAO J, GE J Y, KHUDOLEY A, et al. Numerical and experimental investigation on the material removal profile during polishing of inner surfaces using an abrasive rotating jet[J]. Tribology International, 2024, 191: 109125. doi: 10.1016/j.triboint.2023.109125
    [20]
    ZHU H T, HUANG C Z, WANG J, et al. Experimental study on abrasive waterjet polishing for hard–brittle materials[J]. International Journal of Machine Tools and Manufacture, 2009, 49(7-8): 569-578. doi: 10.1016/j.ijmachtools.2009.02.005
    [21]
    MATSUMURA T, MURAMATSU T, FUEKI S. Abrasive water jet machining of glass with stagnation effect[J]. CIRP Annals, 2011, 60(1): 355-358. doi: 10.1016/j.cirp.2011.03.118
    [22]
    LI Z Z, WANG J M, PENG X Q, et al. Removal of single point diamond-turning marks by abrasive jet polishing[J]. Applied Optics, 2011, 50(16): 2458-2463. doi: 10.1364/AO.50.002458
    [23]
    TSAI F C, YAN B H, KUAN C Y, et al. A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel[J]. International Journal of Machine Tools and Manufacture, 2008, 48(7-8): 932-945. doi: 10.1016/j.ijmachtools.2007.08.019
    [24]
    WANG C J, CHEUNG C F, HO L T, et al. A novel multi-jet polishing process and tool for high-efficiency polishing[J]. International Journal of Machine Tools and Manufacture, 2017, 115: 60-73. doi: 10.1016/j.ijmachtools.2016.12.006
    [25]
    KUMARAN S T, KO T J, UTHAYAKUMAR M, et al. Prediction of surface roughness in abrasive water jet machining of CFRP composites using regression analysis[J]. Journal of Alloys and Compounds, 2017, 724: 1037-1045. doi: 10.1016/j.jallcom.2017.07.108
    [26]
    CAO ZH CH, CHEUNG B C F, KONG L B. Computational fluid dynamics–based analysis of material removal characteristics in fluid jet polishing[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(6): 1035-1048. doi: 10.1177/0954405414564809
    [27]
    ZHANG Z L, CHEUNG C F, GUO J, et al. Pressure-dependent material removal rate model of fluid jet polishing[J]. International Journal of Mechanical Sciences, 2024, 281: 109517. doi: 10.1016/j.ijmecsci.2024.109517
    [28]
    YANG Y Y, YANG M, LI CH H, et al. Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant[J]. Frontiers of Mechanical Engineering, 2023, 18(1): 1. doi: 10.1007/s11465-022-0717-z
    [29]
    XIA Z B, FANG F ZH, AHEARNE E, et al. Advances in polishing of optical freeform surfaces: a review[J]. Journal of Materials Processing Technology, 2020, 286: 116828. doi: 10.1016/j.jmatprotec.2020.116828
    [30]
    LI J H, MA W H, HOU X. Modeling and experiment on elastic material removal in nanoparticle jet polishing[J]. Journal of Manufacturing Processes, 2024, 120: 317-336. doi: 10.1016/j.jmapro.2024.04.033
    [31]
    CHEUNG C F, WANG C J, CAO Z C, et al. Development of a multi-jet polishing process for inner surface finishing[J]. Precision Engineering, 2018, 52: 112-121. doi: 10.1016/j.precisioneng.2017.11.018
    [32]
    ZHANG X P, YAO P, ZHOU P F, et al. Removal mechanism and grinding performance of ZTA nanocomposite ceramics using ternary-hybrid nanofluid minimum quantity lubrication technology[J]. Journal of Manufacturing Processes, 2024, 132: 1-13. doi: 10.1016/j.jmapro.2024.10.060
    [33]
    QU SH SH, YAO P, GONG Y D, et al. Environmentally friendly grinding of C/SiCs using carbon nanofluid minimum quantity lubrication technology[J]. Journal of Cleaner Production, 2022, 366: 132898. doi: 10.1016/j.jclepro.2022.132898
    [34]
    QU SH SH, WEI CH X, YANG Y Y, et al. Grinding mechanism and surface quality evaluation strategy of single crystal 4H-SiC[J]. Tribology International, 2024, 194: 109515. doi: 10.1016/j.triboint.2024.109515
    [35]
    QU SH SH, YAO P, GONG Y D, et al. Modelling and grinding characteristics of unidirectional C-SiCs[J]. Ceramics International, 2022, 48(6): 8314-8324. doi: 10.1016/j.ceramint.2021.12.036
    [36]
    GREENLAND S, SENN S J, ROTHMAN K J, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations[J]. European Journal of Epidemiology, 2016, 31(4): 337-350. doi: 10.1007/s10654-016-0149-3
    [37]
    MONTGOMERY D C. Design and Analysis of Experiments[M]. 2nd ed. Hoboken: John Wiley & Sons, 1983.
    [38]
    AMUTHA J, SHARMA S, SHARMA S K. Strategies based on various aspects of clustering in wireless sensor networks using classical, optimization and machine learning techniques: review, taxonomy, research findings, challenges and future directions[J]. Computer Science Review, 2021, 40: 100376. doi: 10.1016/j.cosrev.2021.100376
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(7)

    Article views(15) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return