Citation: | MA Li, WANG Ying, LI Min, ZHANG Ying, ZHAO Bo. Arbitrary azimuthal optical field manipulation by dual-spiral arrays[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0007 |
Optical field manipulation, an emerging frontier in photonics, demonstrates significant potential in biomedical microscopy, quantum state engineering, and micro-nano fabrication. To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control, in this study, we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays. By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters, we achieved continuous optical modulation spanning the full 0–2π range in azimuthal field distribution. Through rigorous numerical simulations, we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns, revealing, for the first time, a quasi-linear relationship between the radius difference and the resultant optical distribution. This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design, with distinct technical advantages in super-resolution imaging and optical tweezer systems.
[1] |
DHOLAKIA K, ČIŽMÁR T. Shaping the future of manipulation[J]. Nature Photonics, 2011, 5(6): 335-342. doi: 10.1038/nphoton.2011.80
|
[2] |
LIU W W, LI ZH CH, ANSARI M A, et al. Design strategies and applications of dimensional optical field manipulation based on metasurfaces[J]. Advanced Materials, 2023, 35(30): 2208884. doi: 10.1002/adma.202208884
|
[3] |
LIU CH B, BAI Y, ZHAO Q, et al. Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth[J]. Scientific Reports, 2016, 6(1): 34819. doi: 10.1038/srep34819
|
[4] |
MAURER P C, MAZE J R, STANWIX P L, et al. Far-field optical imaging and manipulation of individual spins with nanoscale resolution[J]. Nature Physics, 2010, 6(11): 912-918. doi: 10.1038/nphys1774
|
[5] |
PAN M Y, FU Y F, ZHENG M J, et al. Dielectric metalens for miniaturized imaging systems: progress and challenges[J]. Light: Science & Applications, 2022, 11(1): 195.
|
[6] |
MA Q J, REN G H, XU K, et al. Tunable optical properties of 2D materials and their applications[J]. Advanced Optical Materials, 2021, 9(2): 2001313. doi: 10.1002/adom.202001313
|
[7] |
HAZZAN K E, PACELLA M, SEE T L. Laser processing of hard and ultra-hard materials for micro-machining and surface engineering applications[J]. Micromachines, 2021, 12(8): 895. doi: 10.3390/mi12080895
|
[8] |
HAN M L, SMITH D, NG S H, et al. Ultra-short-pulse lasers—materials—applications[J]. Engineering Proceedings, 2021, 11(1): 44.
|
[9] |
MINCUZZI G, GEMINI L, FAUCON M, et al. Extending ultra-short pulse laser texturing over large area[J]. Applied Surface Science, 2016, 386: 65-71. doi: 10.1016/j.apsusc.2016.05.172
|
[10] |
MATA J, DE MIGUEL I, DURÁN R J, et al. Artificial intelligence (AI) methods in optical networks: a comprehensive survey[J]. Optical Switching and Networking, 2018, 28: 43-57. doi: 10.1016/j.osn.2017.12.006
|
[11] |
HAMPSON K M, TURCOTTE R, MILLER D T, et al. Adaptive optics for high-resolution imaging[J]. Nature Reviews Methods Primers, 2021, 1(1): 68. doi: 10.1038/s43586-021-00066-7
|
[12] |
MOCCI J, QUINTAVALLA M, TRESTINO C, et al. A multiplatform CPU-based architecture for cost-effective adaptive optics systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10): 4431-4439. doi: 10.1109/TII.2018.2799874
|
[13] |
ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3-4): 131-314. doi: 10.1016/j.physrep.2004.11.001
|
[14] |
ZHANG Q, HU G W, MA W L, et al. Interface nano-optics with van der Waals polaritons[J]. Nature, 2021, 597(7875): 187-195. doi: 10.1038/s41586-021-03581-5
|
[15] |
TSENG E, COLBURN S, WHITEHEAD J, et al. Neural nano-optics for high-quality thin lens imaging[J]. Nature Communications, 2021, 12(1): 6493. doi: 10.1038/s41467-021-26443-0
|
[16] |
WANG H L, YOU E M, PANNEERSELVAM R, et al. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design[J]. Light: Science & Applications, 2021, 10(1): 161.
|
[17] |
DE KONINCK Y, CAER C, YUDISTIRA D, et al. GaAs nano-ridge laser diodes fully fabricated in a 300-mm cmos pilot line[J]. Nature, 2025, 637(8044): 63-69. doi: 10.1038/s41586-024-08364-2
|
[18] |
WALMSLEY I A. Quantum optics: science and technology in a new light[J]. Science, 2015, 348(6234): 525-530. doi: 10.1126/science.aab0097
|
[19] |
DOWLING J P, SESHADREESAN K P. Quantum optical technologies for metrology, sensing, and imaging[J]. Journal of Lightwave Technology, 2015, 33(12): 2359-2370. doi: 10.1109/JLT.2014.2386795
|
[20] |
XIA CH X, CHENG H M, HOU X W, et al. Spherical nucleic acids for biomedical applications[J]. Advanced Sensor and Energy Materials, 2024, 3(4): 100117. doi: 10.1016/j.asems.2024.100117
|
[21] |
HASHEMITAHERI M, EBRAHIMI E, DE SILVA G, et al. Optical sensor for BTEX detection: integrating machine learning for enhanced sensing[J]. Advanced Sensor and Energy Materials, 2024, 3(3): 100114. doi: 10.1016/j.asems.2024.100114
|
[22] |
NTZIACHRISTOS V. Going deeper than microscopy: the optical imaging frontier in biology[J]. Nature Methods, 2010, 7(8): 603-614. doi: 10.1038/nmeth.1483
|
[23] |
CHEN P, YANG J, CHU X L, et al. Research and application progress of near infrared spectroscopy analytical technology in China in the past five years[J]. Chinese Journal of Analytical Chemistry, 2024, 52(9): 1213-1224. (in Chinese).
|
[24] |
XING L, MOU H Z, PAN J B, et al. Development of vacuum ultraviolet laser desorption/ionization single-cell mass spectrometry imaging instrument[J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 100-108. (in Chinese).
|
[25] |
FANG X Y, REN H R, LI K Y, et al. Nanophotonic manipulation of optical angular momentum for high-dimensional information optics[J]. Advances in Optics and Photonics, 2021, 13(4): 772-833. doi: 10.1364/AOP.414320
|
[26] |
LI N N, LAI Y H, LAM S H, et al. Directional control of light with nanoantennas[J]. Advanced Optical Materials, 2021, 9(1): 2001081. doi: 10.1002/adom.202001081
|
[27] |
PARK J, JEONG B G, KIM S I, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 2021, 16(1): 69-76. doi: 10.1038/s41565-020-00787-y
|
[28] |
SAVAGE N. Digital spatial light modulators[J]. Nature Photonics, 2009, 3(3): 170-172. doi: 10.1038/nphoton.2009.18
|
[29] |
GUO Y J, GUO Y H, LI C S, et al. Integrated optical phased arrays for beam forming and steering[J]. Applied Sciences, 2021, 11(9): 4017. doi: 10.3390/app11094017
|
[30] |
HE J W, DONG T, XU Y. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 2020, 8: 188284-188298. doi: 10.1109/ACCESS.2020.3030627
|
[31] |
ROSEN J, ALFORD S, ALLAN B, et al. Roadmap on computational methods in optical imaging and holography[J]. Applied Physics B, 2024, 130(9): 166. doi: 10.1007/s00340-024-08280-3
|
[32] |
FOREMAN M R, TÖRÖK P. Computational methods in vectorial imaging[J]. Journal of Modern Optics, 2011, 58(5-6): 339-364. doi: 10.1080/09500340.2010.525668
|
[33] |
RESHEF O, DE LEON I, ALAM M Z, et al. Nonlinear optical effects in epsilon-near-zero media[J]. Nature Reviews Materials, 2019, 4(8): 535-551. doi: 10.1038/s41578-019-0120-5
|
[34] |
MORIMOTO T, NAGAOSA N. Topological nature of nonlinear optical effects in solids[J]. Science Advances, 2016, 2(5): e1501524. doi: 10.1126/sciadv.1501524
|
[35] |
YANG YJ, ZHAO Q, LIU L L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates[J]. Physical Review Applied, 2019, 12(6): 064007. doi: 10.1103/PhysRevApplied.12.064007
|
[36] |
MA L, CHEN C, ZHAN Z J, et al. Generation of spatiotemporal optical vortices in ultrashort laser pulses using rotationally interleaved multispirals[J]. Optics Express, 2022, 30(26): 47287-47303. doi: 10.1364/OE.474592
|
[37] |
CAO H, WANG G Y, ZHANG L C, et al. Reflective optical vortex generators with ultrabroadband self-phase compensation[J]. Advanced Photonics Nexus, 2023, 2(2): 026009.
|
[38] |
WANG Z Y, ZHANG H, LIU X H, et al. Cascaded liquid crystal holography for optical encryption[J]. Chinese Optics Letters, 2023, 21(12): 120003. doi: 10.3788/COL202321.120003
|
[39] |
WANG G Y, CAO H, GUO ZH H, et al. All-liquid-crystal and full-visible-band tunable polarimetry[J]. Advanced Photonics Nexus, 2025, 4(2): 025001.
|