Turn off MathJax
Article Contents
MENG Tian-hua, ZHAO Guo-zhong, XU Shi-xiang, ZHANG Hai-jiao, LI Bang-quan, HU Wei-dong. Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0016
Citation: MENG Tian-hua, ZHAO Guo-zhong, XU Shi-xiang, ZHANG Hai-jiao, LI Bang-quan, HU Wei-dong. Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0016

Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology

cstr: 32171.14.CO.EN-2025-0016
Funds:  Supported by the National Key Research and Development Program of China (No. 2021YFB3200100); the Applied Basic Research Projects of Shanxi Province (No. 202203021221212); the Special Fund of Shanxi Datong University (No. 2024YGZD06)
More Information
  • Author Bio:

    MENG Tian-hua (1980—), female, born in Datong, Shanxi Province, PhD, Associate Professor, Master’s Supervisor. She obtained her Ph.D. degree from China University of Geosciences (Beijing) in 2014, mainly engaged in research on terahertz spectroscopy, and nondestructive testing technology for cultural heritage diagnostics. E-mail: mengtianhua1118@126.com

    HU Wei-dong (1975—), male, born in Shuozhou, Shanxi Province, PhD, Professor, Doctoral Supervisor. He obtained his Ph.D. degree from Beijing Institute of Technology in 2004. His research interests include radar cross section measurement, microwave remote sensing, and terahertz imaging. E-mail: hoowind@bit.edu.cn

  • Corresponding author: hoowind@bit.edu.cn
  • Received Date: 03 Mar 2025
  • Accepted Date: 12 May 2025
  • Available Online: 21 May 2025
  • To scientifically evaluate the restoration performance of ancient city walls, Terahertz time-domain spectroscopy (THz-TDS) and infrared thermal imaging technology assessed the Desheng Fortress (Ming Dynasty). Three representative sections were examined: adobe brick masonry repaired (Area 1), well-preserved original (Area 2), and layer-by-layer ramming repaired (Area 3). THz spectral data revealed significant differences between Area 1 (time delay: 3.72 ps; refractive index: 2.224) and Area 2 (time delay: 3.02 ps; refractive index: 2.107), while Area 3 (time delay: 3.12 ps; refractive index: 2.098) demonstrated nearly identical THz spectral data to Area 2. Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks, capillary phenomena, or biological diseases. The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling, enabling quantitative restoration assessment and establishing a novel approach for scientifically validating traditional conservation techniques.

     

  • loading
  • [1]
    NOGUEIRA R, FERREIRA PINTO A P, GOMES A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses[J]. Cement and Concrete Composites, 2018, 89: 192-204. doi: 10.1016/j.cemconcomp.2018.03.005
    [2]
    SANTOS T, ALMEIDA J, SILVESTRE J D, et al. Life cycle assessment of mortars: a review on technical potential and drawbacks[J]. Construction and Building Materials, 2021, 288: 123069. doi: 10.1016/j.conbuildmat.2021.123069
    [3]
    BARBERO-BARRERA M D M, MALDONADO-RAMOS L, VAN BALEN K, et al. Lime render layers: an overview of their properties[J]. Journal of Cultural Heritage, 2014, 15(3-4): 326-330.
    [4]
    FUKUNAGA K. THz Technology Applied to Cultural Heritage in Practice[M]. Tokyo: Springer, 2016.
    [5]
    VAZQUEZ D A, PILOZZI L, DELRE E, et al. Terahertz imaging super-resolution for documental heritage diagnostics[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(4): 455-465. doi: 10.1109/TTHZ.2024.3410674
    [6]
    CHENG Y Y, TIAN X, WANG N N, et al. Multipolarization image evaluation for passive terahertz imaging detection[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811012. (in Chinese).
    [7]
    CUI Y Q, XU Y F, HAN D H, et al. Hidden-information extraction from layered structures through terahertz imaging down to ultralow SNR[J]. Science Advances, 2023, 9(40): eadg8435. doi: 10.1126/sciadv.adg8435
    [8]
    CHENG L, JI Y C, LI C, et al. Improved SSD network for fast concealed object detection and recognition in passive terahertz security images[J]. Scientific Reports, 2022, 12(1): 12082. doi: 10.1038/s41598-022-16208-0
    [9]
    KOWALSKI M, PALKA N, PISZCZEK M, et al. Hidden object detection system based on fusion of THz and VIS images[J]. Acta Physica Polonica Series A, 2013, 124(3): 490-493. doi: 10.12693/APhysPolA.124.490
    [10]
    KOWALSKI M, KASTEK M, WALCZAKOWSKI M, et al. Passive imaging of concealed objects in terahertz and long-wavelength infrared[J]. Applied Optics, 2015, 54(13): 3826-3833. doi: 10.1364/AO.54.003826
    [11]
    RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures, 2016, 156: 338-347. doi: 10.1016/j.compstruct.2015.09.055
    [12]
    ZHANG T Y, LI B Y, YUAN Y, et al. Precise measurement of refractive index in the ambient environment using continuous-wave terahertz frequency-domain spectroscopy (THz-FDS)[J]. Applied Physics Express, 2023, 16(9): 096502. doi: 10.35848/1882-0786/acf7ab
    [13]
    XUE K L, CHEN Y X, ZHANG W N, et al. Continuous terahertz wave imaging for debonding detection and visualization analysis in layered structures[J]. IEEE Access, 2023, 11: 31607-31618. doi: 10.1109/ACCESS.2023.3252372
    [14]
    WU Q Y S, ZHANG N, LIM V, et al. Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography[J]. ChemPhysMater, 2024, 3(4): 470-480. doi: 10.1016/j.chphma.2024.07.004
    [15]
    DONG J L, KIM B, LOCQUET A, et al. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves[J]. Composites Part B: Engineering, 2015, 79: 667-675. doi: 10.1016/j.compositesb.2015.05.028
    [16]
    LIU H S, ZHANG Z W, ZHANG X, et al. Dimensionality reduction for identification of hepatic tumor samples based on terahertz time-domain spectroscopy[J]. IEEE Transactions on Terahertz Science and Technolog, 2018, 8(3): 271-277. doi: 10.1109/TTHZ.2018.2813085
    [17]
    GEZIMATI M, SINGH G. Advances in terahertz technology for cancer detection applications[J]. Optical and Quantum Electronics, 2023, 55(2): 151. doi: 10.1007/s11082-022-04340-0
    [18]
    JO Y H, LEE C H. Ultrasonic properties of a stone architectural heritage and weathering evaluations based on provenance site[J]. Applied Sciences, 2022, 12(3): 1498. doi: 10.3390/app12031498
    [19]
    MENG T H, TANG J Y, WANG H H, et al. Application of ultrasonic nondestructive detection in disease detection and restoration of the Deshengbao Great Wall[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 74-80. (in Chinese).
    [20]
    GUIDORZI L, RE A, TANSELLA F, et al. X-CT reconstruction as a tool for monitoring the conservation state and decay processes of works of art and in support of restoration and conservation strategies[J]. Heritage, 2025, 8(2): 52. doi: 10.3390/heritage8020052
    [21]
    KRÜGENER K, SCHWERDTFEGER M, BUSCH S F, et al. Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology[J]. Scientific Reports, 2015, 5: 14842. doi: 10.1038/srep14842
    [22]
    KRÜGener K, BUSCH S F, SOLTANI A, et al. Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 495-502. doi: 10.1007/s10762-016-0339-9
    [23]
    MIZUNO M, FUKUNAGA K, SAITO S, et al. Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 2009, 4: 09044. doi: 10.2971/jeos.2009.09044
    [24]
    FABRE M, DURAND R, BASSEL L, et al. 2D and 3D terahertz imaging and X-rays CT for sigillography study[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 483-494. doi: 10.1007/s10762-017-0356-3
    [25]
    HUANG H CH, LI X Y, ZHENG ZH Y, et al. Holographic characterization of typical silicate minerals by terahertz time-domain spectroscopy[J]. Applied Clay Science, 2025, 267: 107720. doi: 10.1016/j.clay.2025.107720
    [26]
    BODNAR J L, METAYER J J, MOUHOUBI K, et al. Non destructive testing of works of art by terahertz analysis[J]. The European Physical Journal Applied Physics (EPJ AP), 2013, 64(2): 21001. doi: 10.1051/epjap/2013130132
    [27]
    MIAO X Y, LIU X C, CHEN M X, et al. Terahertz spectral characteristics of rocks with different lithologies[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1314-1319. (查阅网上资料, 本条文献为英文文献, 请确认).
    [28]
    ZHANG S Q, ZHANG T, ZHENG ZH Y, et al. Application of terahertz spectroscopy on rock and mineral[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2100006. (in Chinese).
    [29]
    MEOLA C, DI MAIO R, ROBERTI N, et al. Application of infrared thermography and geophysical methods for defect detection in architectural structures[J]. Engineering Failure Analysis, 2005, 12(6): 875-892. doi: 10.1016/j.engfailanal.2004.12.030
    [30]
    MARTIN M, CHONG A, BILJECKI F, et al. Infrared thermography in the built environment: a multi-scale review[J]. Renewable and Sustainable Energy Reviews, 2022, 165: 112540. doi: 10.1016/j.rser.2022.112540
    [31]
    OZ N, SOCHEN N, MENDLOVIC D, et al. Estimating temperatures with low-cost infrared cameras using physically-constrained deep neural networks[J]. Optics Express, 2024, 32(17): 30565-30582. doi: 10.1364/OE.531349
    [32]
    JANSSENS O, SCHULZ R, SLAVKOVIKJ V, et al. Thermal image based fault diagnosis for rotating machinery[J]. Infrared Physics & Technology, 2015, 73: 78-87.
    [33]
    HUANG SH Q, WANG F H, PAN T CH, et al. Research on a monitoring model of revolute pair clearance based on dynamic features and thermal imaging fusion[J]. Infrared Physics & Technology, 2023, 135: 104967.
    [34]
    LEITENSTORFER A, MOSKALENKO A S, KAMPFRATH T, et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2023, 56(22): 223001. doi: 10.1088/1361-6463/acbe4c
    [35]
    KOCH M, MITTLEMAN D M, ORNIK J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3(1): 48. doi: 10.1038/s43586-023-00232-z
    [36]
    SHEN Y C, UPADHYA P C, BEERE H E, et al. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers[J]. Applied Physics Letters, 2004, 85(2): 164-166. doi: 10.1063/1.1768313
    [37]
    SHI W, WANG ZH Q, LI CH F, et al. New antenna for detecting polarization states of terahertz[J]. Frontiers in Physics, 2022, 10: 850770. doi: 10.3389/fphy.2022.850770
    [38]
    MENG T H, HUANG R, LU Y H, et al. Highly sensitive terahertz non-destructive testing technology for stone relics deterioration prediction using SVM-based machine learning models[J]. Heritage Science, 2021, 9(1): 24. doi: 10.1186/s40494-021-00502-7
    [39]
    DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001, 18(7): 1562-1571. doi: 10.1364/JOSAA.18.001562
    [40]
    DUVILLARET L, GARET F, COUTAZ J L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy[J]. Applied Optics, 1999, 38(2): 409-415. doi: 10.1364/AO.38.000409
    [41]
    TEENA M, MANICKAVASAGAN A. Thermal infrared imaging[M]//MANICKAVASAGAN A, JAYASURIYA H. Imaging with Electromagnetic Spectrum. Berlin Heidelberg: Springer, 2014: 147-173.
    [42]
    TALGHADER J J, GAWARIKAR A S, SHEA R P. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24.
    [43]
    ZHANG Y C, WANG ZH K, FU X B, et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager[J]. Infrared Physics & Technology, 2019, 102: 103020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(107) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return