Citation: | MENG Tian-hua, ZHAO Guo-zhong, XU Shi-xiang, ZHANG Hai-jiao, LI Bang-quan, HU Wei-dong. Evaluation of restoration effects for city walls based on terahertz-infrared integrated technology[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0016 |
To scientifically evaluate the restoration performance of ancient city walls, Terahertz time-domain spectroscopy (THz-TDS) and infrared thermal imaging technology assessed the Desheng Fortress (Ming Dynasty). Three representative sections were examined: adobe brick masonry repaired (Area 1), well-preserved original (Area 2), and layer-by-layer ramming repaired (Area 3). THz spectral data revealed significant differences between Area 1 (time delay: 3.72 ps; refractive index: 2.224) and Area 2 (time delay: 3.02 ps; refractive index: 2.107), while Area 3 (time delay: 3.12 ps; refractive index: 2.098) demonstrated nearly identical THz spectral data to Area 2. Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks, capillary phenomena, or biological diseases. The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling, enabling quantitative restoration assessment and establishing a novel approach for scientifically validating traditional conservation techniques.
[1] |
NOGUEIRA R, FERREIRA PINTO A P, GOMES A. Design and behavior of traditional lime-based plasters and renders. Review and critical appraisal of strengths and weaknesses[J]. Cement and Concrete Composites, 2018, 89: 192-204. doi: 10.1016/j.cemconcomp.2018.03.005
|
[2] |
SANTOS T, ALMEIDA J, SILVESTRE J D, et al. Life cycle assessment of mortars: a review on technical potential and drawbacks[J]. Construction and Building Materials, 2021, 288: 123069. doi: 10.1016/j.conbuildmat.2021.123069
|
[3] |
BARBERO-BARRERA M D M, MALDONADO-RAMOS L, VAN BALEN K, et al. Lime render layers: an overview of their properties[J]. Journal of Cultural Heritage, 2014, 15(3-4): 326-330.
|
[4] |
FUKUNAGA K. THz Technology Applied to Cultural Heritage in Practice[M]. Tokyo: Springer, 2016.
|
[5] |
VAZQUEZ D A, PILOZZI L, DELRE E, et al. Terahertz imaging super-resolution for documental heritage diagnostics[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(4): 455-465. doi: 10.1109/TTHZ.2024.3410674
|
[6] |
CHENG Y Y, TIAN X, WANG N N, et al. Multipolarization image evaluation for passive terahertz imaging detection[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811012. (in Chinese).
|
[7] |
CUI Y Q, XU Y F, HAN D H, et al. Hidden-information extraction from layered structures through terahertz imaging down to ultralow SNR[J]. Science Advances, 2023, 9(40): eadg8435. doi: 10.1126/sciadv.adg8435
|
[8] |
CHENG L, JI Y C, LI C, et al. Improved SSD network for fast concealed object detection and recognition in passive terahertz security images[J]. Scientific Reports, 2022, 12(1): 12082. doi: 10.1038/s41598-022-16208-0
|
[9] |
KOWALSKI M, PALKA N, PISZCZEK M, et al. Hidden object detection system based on fusion of THz and VIS images[J]. Acta Physica Polonica Series A, 2013, 124(3): 490-493. doi: 10.12693/APhysPolA.124.490
|
[10] |
KOWALSKI M, KASTEK M, WALCZAKOWSKI M, et al. Passive imaging of concealed objects in terahertz and long-wavelength infrared[J]. Applied Optics, 2015, 54(13): 3826-3833. doi: 10.1364/AO.54.003826
|
[11] |
RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures, 2016, 156: 338-347. doi: 10.1016/j.compstruct.2015.09.055
|
[12] |
ZHANG T Y, LI B Y, YUAN Y, et al. Precise measurement of refractive index in the ambient environment using continuous-wave terahertz frequency-domain spectroscopy (THz-FDS)[J]. Applied Physics Express, 2023, 16(9): 096502. doi: 10.35848/1882-0786/acf7ab
|
[13] |
XUE K L, CHEN Y X, ZHANG W N, et al. Continuous terahertz wave imaging for debonding detection and visualization analysis in layered structures[J]. IEEE Access, 2023, 11: 31607-31618. doi: 10.1109/ACCESS.2023.3252372
|
[14] |
WU Q Y S, ZHANG N, LIM V, et al. Detection of a glass fiber-reinforced polymer with defects by terahertz computed tomography[J]. ChemPhysMater, 2024, 3(4): 470-480. doi: 10.1016/j.chphma.2024.07.004
|
[15] |
DONG J L, KIM B, LOCQUET A, et al. Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves[J]. Composites Part B: Engineering, 2015, 79: 667-675. doi: 10.1016/j.compositesb.2015.05.028
|
[16] |
LIU H S, ZHANG Z W, ZHANG X, et al. Dimensionality reduction for identification of hepatic tumor samples based on terahertz time-domain spectroscopy[J]. IEEE Transactions on Terahertz Science and Technolog, 2018, 8(3): 271-277. doi: 10.1109/TTHZ.2018.2813085
|
[17] |
GEZIMATI M, SINGH G. Advances in terahertz technology for cancer detection applications[J]. Optical and Quantum Electronics, 2023, 55(2): 151. doi: 10.1007/s11082-022-04340-0
|
[18] |
JO Y H, LEE C H. Ultrasonic properties of a stone architectural heritage and weathering evaluations based on provenance site[J]. Applied Sciences, 2022, 12(3): 1498. doi: 10.3390/app12031498
|
[19] |
MENG T H, TANG J Y, WANG H H, et al. Application of ultrasonic nondestructive detection in disease detection and restoration of the Deshengbao Great Wall[J]. Geotechnical Investigation & Surveying, 2023, 51(11): 74-80. (in Chinese).
|
[20] |
GUIDORZI L, RE A, TANSELLA F, et al. X-CT reconstruction as a tool for monitoring the conservation state and decay processes of works of art and in support of restoration and conservation strategies[J]. Heritage, 2025, 8(2): 52. doi: 10.3390/heritage8020052
|
[21] |
KRÜGENER K, SCHWERDTFEGER M, BUSCH S F, et al. Terahertz meets sculptural and architectural art: Evaluation and conservation of stone objects with T-ray technology[J]. Scientific Reports, 2015, 5: 14842. doi: 10.1038/srep14842
|
[22] |
KRÜGener K, BUSCH S F, SOLTANI A, et al. Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 495-502. doi: 10.1007/s10762-016-0339-9
|
[23] |
MIZUNO M, FUKUNAGA K, SAITO S, et al. Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy[J]. Journal of the European Optical Society-Rapid Publications, 2009, 4: 09044. doi: 10.2971/jeos.2009.09044
|
[24] |
FABRE M, DURAND R, BASSEL L, et al. 2D and 3D terahertz imaging and X-rays CT for sigillography study[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(4): 483-494. doi: 10.1007/s10762-017-0356-3
|
[25] |
HUANG H CH, LI X Y, ZHENG ZH Y, et al. Holographic characterization of typical silicate minerals by terahertz time-domain spectroscopy[J]. Applied Clay Science, 2025, 267: 107720. doi: 10.1016/j.clay.2025.107720
|
[26] |
BODNAR J L, METAYER J J, MOUHOUBI K, et al. Non destructive testing of works of art by terahertz analysis[J]. The European Physical Journal Applied Physics (EPJ AP), 2013, 64(2): 21001. doi: 10.1051/epjap/2013130132
|
[27] |
MIAO X Y, LIU X C, CHEN M X, et al. Terahertz spectral characteristics of rocks with different lithologies[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1314-1319. (查阅网上资料, 本条文献为英文文献, 请确认).
|
[28] |
ZHANG S Q, ZHANG T, ZHENG ZH Y, et al. Application of terahertz spectroscopy on rock and mineral[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2100006. (in Chinese).
|
[29] |
MEOLA C, DI MAIO R, ROBERTI N, et al. Application of infrared thermography and geophysical methods for defect detection in architectural structures[J]. Engineering Failure Analysis, 2005, 12(6): 875-892. doi: 10.1016/j.engfailanal.2004.12.030
|
[30] |
MARTIN M, CHONG A, BILJECKI F, et al. Infrared thermography in the built environment: a multi-scale review[J]. Renewable and Sustainable Energy Reviews, 2022, 165: 112540. doi: 10.1016/j.rser.2022.112540
|
[31] |
OZ N, SOCHEN N, MENDLOVIC D, et al. Estimating temperatures with low-cost infrared cameras using physically-constrained deep neural networks[J]. Optics Express, 2024, 32(17): 30565-30582. doi: 10.1364/OE.531349
|
[32] |
JANSSENS O, SCHULZ R, SLAVKOVIKJ V, et al. Thermal image based fault diagnosis for rotating machinery[J]. Infrared Physics & Technology, 2015, 73: 78-87.
|
[33] |
HUANG SH Q, WANG F H, PAN T CH, et al. Research on a monitoring model of revolute pair clearance based on dynamic features and thermal imaging fusion[J]. Infrared Physics & Technology, 2023, 135: 104967.
|
[34] |
LEITENSTORFER A, MOSKALENKO A S, KAMPFRATH T, et al. The 2023 terahertz science and technology roadmap[J]. Journal of Physics D: Applied Physics, 2023, 56(22): 223001. doi: 10.1088/1361-6463/acbe4c
|
[35] |
KOCH M, MITTLEMAN D M, ORNIK J, et al. Terahertz time-domain spectroscopy[J]. Nature Reviews Methods Primers, 2023, 3(1): 48. doi: 10.1038/s43586-023-00232-z
|
[36] |
SHEN Y C, UPADHYA P C, BEERE H E, et al. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers[J]. Applied Physics Letters, 2004, 85(2): 164-166. doi: 10.1063/1.1768313
|
[37] |
SHI W, WANG ZH Q, LI CH F, et al. New antenna for detecting polarization states of terahertz[J]. Frontiers in Physics, 2022, 10: 850770. doi: 10.3389/fphy.2022.850770
|
[38] |
MENG T H, HUANG R, LU Y H, et al. Highly sensitive terahertz non-destructive testing technology for stone relics deterioration prediction using SVM-based machine learning models[J]. Heritage Science, 2021, 9(1): 24. doi: 10.1186/s40494-021-00502-7
|
[39] |
DORNEY T D, BARANIUK R G, MITTLEMAN D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001, 18(7): 1562-1571. doi: 10.1364/JOSAA.18.001562
|
[40] |
DUVILLARET L, GARET F, COUTAZ J L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy[J]. Applied Optics, 1999, 38(2): 409-415. doi: 10.1364/AO.38.000409
|
[41] |
TEENA M, MANICKAVASAGAN A. Thermal infrared imaging[M]//MANICKAVASAGAN A, JAYASURIYA H. Imaging with Electromagnetic Spectrum. Berlin Heidelberg: Springer, 2014: 147-173.
|
[42] |
TALGHADER J J, GAWARIKAR A S, SHEA R P. Spectral selectivity in infrared thermal detection[J]. Light: Science & Applications, 2012, 1(8): e24.
|
[43] |
ZHANG Y C, WANG ZH K, FU X B, et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager[J]. Infrared Physics & Technology, 2019, 102: 103020.
|