Citation: | LIU Yin-ling, YAO Chi, OUYANG Shang-tao, WAN Yi-rong, CHEN Mo, LI Bin. Detection of co-phasing error in segmented mirror based on extended Young’s interferometry combined with Vision Transformer[J]. Chinese Optics. doi: 10.37188/CO.EN-2025-0030 |
Due to the inability of manufacturing a single monolithic mirror at the 10-meter scales, segmented mirrors have become indispensable tools in modern astronomical research. However, to match the imaging performance of the monolithic counterpart, the sub-mirrors must maintain precise co-phasing. Piston error critically degrades segmented mirror imaging quality, necessitating efficient and precise detection. To address the limitations that the conventional circular-aperture diffraction with two-wavelength algorithm is susceptible to decentration errors, and the traditional convolutional neural networks (CNNs) struggle to capture global features under large-range piston errors due to their restricted local receptive fields, this paper proposes a method that integrate enhanced Young’s interference principles with a Vision Transformer (ViT) to detect piston error. By suppressing decentration error interference through two symmetrically arranged apertures and extending the measurement range to ± 7.95 μm via a two-wavelength (589 nm/600 nm) algorithm, this approach exploits ViT’s self-attention mechanism to model global characteristics of interference fringes. Unlike CNNs constrained by local convolutional kernels, the ViT significantly improves sensitivity to interferogram periodicity. The simulation results demonstrate that the proposed method achieves a measurement accuracy of 5 nm (
[1] |
AN Q C, LIU X Y, LI H W, et al. Sparse aperture testing method for large-aperture segmented telescopes (invited)[J]. Acta Optica Sinica (Online), 2025, 2(6): 0614001. (in Chinese).
|
[2] |
VAN DAM M A, LE MIGNANT D, MACINTOSH B A. Performance of the Keck Observatory adaptive-optics system[J]. Applied Optics, 2004, 43(29): 5458-5467. doi: 10.1364/AO.43.005458
|
[3] |
PADOVANI P, CIRASUOLO M. The extremely large telescope[J]. Contemporary Physics, 2023, 64(1): 47-64. doi: 10.1080/00107514.2023.2266921
|
[4] |
RIEKE G H, WRIGHT G S, BÖKER T, et al. The mid-infrared instrument for the James Webb space telescope, I: introduction[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(953): 584-594. doi: 10.1086/682252
|
[5] |
KIM D, CHOI H, BRENDEL T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040
|
[6] |
XIE Z L, MA H T, QI B, et al. Experimental demonstration of enhanced resolution of a Golay3 sparse-aperture telescope[J]. Chinese Optics Letters, 2017, 15(4): 041101. doi: 10.3788/COL201715.041101
|
[7] |
LI Y, WANG S Q, RAO C H. Dispersed-fringe-accumulation-based left-subtract-right method for fine co-phasing of a dispersed fringe sensor[J]. Applied Optics, 2017, 56(15): 4267-4273. doi: 10.1364/AO.56.004267
|
[8] |
ZHANG Y F, XIAN H. Piston sensing via a dispersed fringe sensor with a merit-function-based active scanning algorithm at low light levels[J]. Chinese Optics Letters, 2019, 17(12): 121101. doi: 10.3788/COL201917.121101
|
[9] |
WANG X H, FU Q, HUANG L H, et al. Experimental research on application of Hartmann micro-lens array in coherent beam combination of two-dimensional laser array[J]. Chinese Optics Letters, 2012, 10(8): 081402. doi: 10.3788/COL201210.081402
|
[10] |
ZHANG D, ZHANG X B, XU S Y, et al. Simplified Phase Diversity algorithm based on a first-order Taylor expansion[J]. Applied Optics, 2016, 55(28): 7872-7877. doi: 10.1364/AO.55.007872
|
[11] |
LI B, LIU Y L, YANG A K, et al. Study on the co-phasing simulation and experimental of segmented mirror based on broadband light[J]. Journal of Modern Optics, 2024, 71(1-3): 42-51. doi: 10.1080/09500340.2024.2394954
|
[12] |
DUMONT M, CORREIA C M, SAUVAGE J F, et al. Phasing segmented telescopes via deep learning methods: application to a deployable CubeSat[J]. Journal of the Optical Society of America A, 2024, 41(3): 489-499. doi: 10.1364/JOSAA.506182
|
[13] |
GUERRA-RAMOS D, DÍAZ-GARCÍA L, TRUJILLO-SEVILLA J, et al. Piston alignment of segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2018, 43(17): 4264-4267. doi: 10.1364/OL.43.004264
|
[14] |
GUERRA-RAMOS D, TRUJILLO-SEVILLA J, RODRÍGUEZ-RAMOS J M. Global piston restoration of segmented mirrors with recurrent neural networks[J]. OSA Continuum, 2020, 3(5): 1355-1363. doi: 10.1364/OSAC.387358
|
[15] |
LI D Q, XU S Y, WANG D, et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2019, 44(5): 1170-1173. doi: 10.1364/OL.44.001170
|
[16] |
LI D Q, WANG D, LI J Q. Large range of a high-precision, independent, sub-mirror three-dimensional co-phase error sensing and correction method via a mask and population algorithm[J]. Sensors, 2024, 24(1): 279. doi: 10.3390/s24010279
|
[17] |
LI D Q, WANG D, YAN D J. Piston error automatic correction for segmented mirrors via deep reinforcement learning[J]. Sensors, 2024, 24(13): 4236. doi: 10.3390/s24134236
|
[18] |
MA X F, XIE Z L, MA H T, et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 2019, 27(11): 16058-16070. doi: 10.1364/OE.27.016058
|
[19] |
MA X F, XIE Z L, MA H T, et al. Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network[J]. Optics and Lasers in Engineering, 2020, 128: 106005. doi: 10.1016/j.optlaseng.2020.106005
|
[20] |
HUI M, LI W Q, LIU M, et al. Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network[J]. Applied Optics, 2020, 59(3): 771-778. doi: 10.1364/AO.379194
|
[21] |
HUI M, LI W Q, WU Y, et al. Breadth-first piston diagnosing approach for segmented mirrors through supervised learning of multiple-wavelength images[J]. Applied Optics, 2020, 59(32): 9963-9970. doi: 10.1364/AO.402943
|
[22] |
WANG Y R, ZHANG C Y, GUO L, et al. Decoupled object-independent image features for fine phasing of segmented mirrors using deep learning[J]. Remote Sensing, 2022, 14(18): 4681. doi: 10.3390/rs14184681
|
[23] |
LI B, YANG A K, LI Y B, et al. Research on co-phasing detection of segmented mirror based on convolutioned neural networks[J]. Optics & Laser Technology, 2023, 167: 109737.
|
[24] |
CHENG K K, WANG S Q, LIU X S, et al. Co-phase error detection for segmented mirrors based on far-field information and transfer learning[J]. Photonics, 2024, 11(11): 1064. doi: 10.3390/photonics11111064
|