Volume 16 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
YANG Zong-meng, XING Qian, CHEN Yi-an, HOU Yu-min. Improving sensitivity by multi-coherence of magnetic surface plasmons[J]. Chinese Optics, 2023, 16(2): 458-465. doi: 10.37188/CO.EN.2022-0009
Citation: YANG Zong-meng, XING Qian, CHEN Yi-an, HOU Yu-min. Improving sensitivity by multi-coherence of magnetic surface plasmons[J]. Chinese Optics, 2023, 16(2): 458-465. doi: 10.37188/CO.EN.2022-0009

Improving sensitivity by multi-coherence of magnetic surface plasmons

Funds:  Supported by National Natural Science Foundation of China (No. 61575006)
More Information
  • Author Bio:

    Yang Zong-meng (1996—), male, born in Daqing, Heilongjiang province, is now a master candidate in the School of physics, Beijing University, maily engaged in the research of coherence of surface plasmons. E-mail: zemelyang@pku.edu.cn

    Hou Yu-min, female, born in Weifang, Shandong Province, Ph.D, now is a asocciate professor in the School of physics, Beijing University, mainly engaged in the research of surface plasmons recently. E-mail: ymhou@pku.edu.cn

  • Corresponding author: ymhou@pku.edu.cn
  • Received Date: 24 May 2022
  • Rev Recd Date: 20 Jun 2022
  • Available Online: 24 Aug 2022
  • In this paper, we study the coherence of magnetic surface plasmons in one-dimensional metallic nano-slit arrays and propose a double-dip sensing method to improve sensitivity. Different from the conventional way of scanning wavelength at a fixed incident angle, coherence of surface plasmons is investigated by changing the incident angle at a fixed wavelength. Due to the retardation effect, two coherence dips move in opposite directions as the refractive index of the surrounding medium changes. Compared with one dip used for sensing, two oppositely moving dips can efficiently improve the sensitivity. The total sensitivity of two dips can reach 141.6°/RIU while the sensitivities of two single dips are 39.2°/RIU and 102.4°/RIU respectively. Besides, the inconsistency between the refractive index of slit medium and upper medium has few influences on the sensing performance, which will have wide practical applications.

     

  • loading
  • [1]
    KOYA A N, ZHU X CH, OHANNESIAN N, et al. Nanoporous metals: from plasmonic properties to applications in enhanced spectroscopy and photocatalysis[J]. ACS Nano, 2021, 15(4): 6038-6060. doi: 10.1021/acsnano.0c10945
    [2]
    HE ZH H, XUE W W, CUI W, et al. Tunable fano resonance and enhanced sensing in a simple Au/TiO2 hybrid metasurface[J]. Nanomaterials, 2020, 10(4): 687. doi: 10.3390/nano10040687
    [3]
    PALERMO G, SREEKANTH K V, MACCAFERRI N, et al. Hyperbolic dispersion metasurfaces for molecular biosensing[J]. Nanophotonics, 2021, 10(1): 295-314.
    [4]
    AHMADIVAND A, GERISLIOGLU B, RAMEZANI Z, et al. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins[J]. Biosensors and Bioelectronics, 2021, 177: 112971. doi: 10.1016/j.bios.2021.112971
    [5]
    SHEN B L, LIU L W, LI Y P, et al. Nonlinear spectral-imaging study of second- and third-harmonic enhancements by surface-lattice resonances[J]. Advanced Optical Materials, 2020, 8(8): 1901981. doi: 10.1002/adom.201901981
    [6]
    GUAN J, SAGAR L K, LI R, et al. Quantum dot-plasmon lasing with controlled polarization patterns[J]. ACS Nano, 2020, 14(3): 3426-3433. doi: 10.1021/acsnano.9b09466
    [7]
    DORRAH A H, CAPASSO F. Tunable structured light with flat optics[J]. Science, 2022, 376(6591): eabi6860. doi: 10.1126/science.abi6860
    [8]
    PANDEY P S, RAGHUWANSHI S K, KUMAR S. Recent advances in two-dimensional materials-based kretschmann configuration for SPR sensors: a review[J]. IEEE Sensors Journal, 2022, 22(2): 1069-1080. doi: 10.1109/JSEN.2021.3133007
    [9]
    XUE T Y, LIANG W Y, LI Y W, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor[J]. Nature Communications, 2019, 10(1): 28. doi: 10.1038/s41467-018-07947-8
    [10]
    BAGHBADORANI H K, BARVESTANI J. Sensing improvement of 1D photonic crystal sensors by hybridization of defect and Bloch surface modes[J]. Applied Surface Science, 2021, 537: 147730. doi: 10.1016/j.apsusc.2020.147730
    [11]
    LIU F X, SONG B X, SU G X, et al. Sculpting extreme electromagnetic field enhancement in free space for molecule sensing[J]. Small, 2018, 14(33): 1801146. doi: 10.1002/smll.201801146
    [12]
    CATTONI A, GHENUCHE P, HAGHIRI-GOSNET A M, et al. λ3/1000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography[J]. Nano Letters, 2011, 11(9): 3557-3563. doi: 10.1021/nl201004c
    [13]
    MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857. doi: 10.1021/cr100313v
    [14]
    NUGROHO F A A, ALBINSSON D, ANTOSIEWICZ T J, et al. Plasmonic metasurface for spatially resolved optical sensing in three dimensions[J]. ACS Nano, 2020, 14(2): 2345-2353. doi: 10.1021/acsnano.9b09508
    [15]
    BUKASOV R, SHUMAKER-PARRY J S. Highly tunable infrared extinction properties of gold nanocrescents[J]. Nano Letters, 2007, 7(5): 1113-1118. doi: 10.1021/nl062317o
    [16]
    HOU Y M. Coherence of magnetic resonators in a metamaterial[J]. AIP Advances, 2013, 3(12): 122119. doi: 10.1063/1.4861028
    [17]
    HOU Y M. Interaction of magnetic resonators studied by the magnetic field enhancement[J]. AIP Advances, 2013, 3(12): 122118. doi: 10.1063/1.4861027
    [18]
    KRAVETS V G, SCHEDIN F, GRIGORENKO A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles[J]. Physical Review Letters, 2008, 101(8): 087403. doi: 10.1103/PhysRevLett.101.087403
    [19]
    LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature Photonics, 2017, 11(9): 543-554. doi: 10.1038/nphoton.2017.142
    [20]
    LIMONOV M F. Fano resonance for applications[J]. Advances in Optics and Photonics, 2021, 13(3): 703-771. doi: 10.1364/AOP.420731
    [21]
    XIAO SH Y, WANG T, LIU T T, et al. Active metamaterials and metadevices: a review[J]. Journal of Physics D:Applied Physics, 2020, 53(50): 503002. doi: 10.1088/1361-6463/abaced
    [22]
    WANG B Q, YU P, WANG W H, et al. High-Q plasmonic resonances: fundamentals and applications[J]. Advanced Optical Materials, 2021, 9(7): 2001520. doi: 10.1002/adom.202001520
    [23]
    UTYUSHEV A D, ZAKOMIRNYI V I, RASSKAZOV I L. Collective lattice resonances: plasmonics and beyond[J]. Reviews in Physics, 2021, 6: 100051. doi: 10.1016/j.revip.2021.100051
    [24]
    KRAVETS V G, KABASHIN A V, BARNES W L, et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 2018, 118(12): 5912-5951. doi: 10.1021/acs.chemrev.8b00243
    [25]
    DONG J W, CHEN SH, HUANG G F, et al. Low-index-contrast dielectric lattices on metal for refractometric sensing[J]. Advanced Optical Materials, 2020, 8(21): 2000877. doi: 10.1002/adom.202000877
    [26]
    CHEN J, ZHANG Q, PENG CH, et al. Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing[J]. IEEE Photonics Technology Letters, 2018, 30(8): 728-731. doi: 10.1109/LPT.2018.2814216
    [27]
    LIANG L, ZHENG Q L, WEN L, et al. Miniaturized spectroscopy with tunable and sensitive plasmonic structures[J]. Optics Letters, 2021, 46(17): 4264-4267. doi: 10.1364/OL.426624
    [28]
    WANG H, WANG X L, YAN CH, et al. Full color generation using silver tandem nanodisks[J]. ACS Nano, 2017, 11(5): 4419-4427. doi: 10.1021/acsnano.6b08465
    [29]
    DAQIQEH REZAEI S, DONG ZH G, YOU EN CHAN J, et al. Nanophotonic structural colors[J]. ACS Photonics, 2021, 8(1): 18-33. doi: 10.1021/acsphotonics.0c00947
    [30]
    SHI X ZH, CHEN CH SH, LIU S H, et al. Nonvolatile, reconfigurable and narrowband mid-infrared filter based on surface lattice resonance in phase-change Ge2Sb2Te5[J]. Nanomaterials, 2020, 10(12): 2530. doi: 10.3390/nano10122530
    [31]
    MURAVITSKAYA A, GOKARNA A, MOVSESYAN A, et al. Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles[J]. Nanoscale, 2020, 12(11): 6394-6402. doi: 10.1039/C9NR09393A
    [32]
    SHEN Y, ZHOU J H, LIU T R, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit[J]. Nature Communications, 2013, 4(1): 2381. doi: 10.1038/ncomms3381
    [33]
    LINDEN S, ENKRICH C, WEGENER M, et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 2004, 306(5700): 1351-1353. doi: 10.1126/science.1105371
    [34]
    ZHU Y H, ZHANG H, LI D M, et al. Magnetic plasmons in a simple metallic nanogroove array for refractive index sensing[J]. Optics Express, 2018, 26(7): 9148-9154. doi: 10.1364/OE.26.009148
    [35]
    CHEN J, FAN W F, ZHANG T, et al. Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing[J]. Optics Express, 2017, 25(4): 3675-3681. doi: 10.1364/OE.25.003675
    [36]
    CHEN X SH, PARK H R, LINDQUIST N C, et al. Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit[J]. Scientific Reports, 2014, 4(1): 6722.
    [37]
    RHIE J, LEE D, BAHK Y M, et al. Control of optical nanometer gap shapes made via standard lithography using atomic layer deposition[J]. Journal of Micro/Nanolithography,MEMS,and MOEMS, 2018, 17(2): 023504.
    [38]
    JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379. doi: 10.1103/PhysRevB.6.4370
    [39]
    HOSSAIN M B, RANA M M, ABDULRAZAK L F, et al. Design and analysis of graphene–MoS2 hybrid layer based SPR biosensor with TiO2–SiO2 nano film for formalin detection: numerical approach[J]. Optical and Quantum Electronics, 2019, 51(6): 195. doi: 10.1007/s11082-019-1911-z
    [40]
    PANDEY P S, SINGH Y, RAGHUWANSHI S K. Theoretical analysis of the LRSPR sensor with enhance FOM for low refractive index detection using MXene and fluorinated graphene[J]. IEEE Sensors Journal, 2021, 21(21): 23979-23986. doi: 10.1109/JSEN.2021.3112530
    [41]
    MUDGAL N, SAHARIA A, AGARWAL A, et al. ZnO and Bi-metallic (Ag–Au) layers based surface plasmon resonance (SPR) biosensor with BaTiO3 and graphene for biosensing applications[J]. IETE Journal of Research, 2020: 1-8. doi: 10.1080/03772063.2020.1844074
    [42]
    HOSSAIN M M, TALUKDER M A. Gate-controlled graphene surface plasmon resonance glucose sensor[J]. Optics Communications, 2021, 493: 126994. doi: 10.1016/j.optcom.2021.126994
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(721) PDF downloads(330) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return