Volume 7 Issue 1
Jan.  2014
Turn off MathJax
Article Contents
YANG Hong, HUANG Yuan-hui, GONG Chang-mei, WU Teng-fei, SHAO Xiao-peng. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001
Citation: YANG Hong, HUANG Yuan-hui, GONG Chang-mei, WU Teng-fei, SHAO Xiao-peng. Advances on techniques of breaking diffraction limitation using scattering medium[J]. Chinese Optics, 2014, 7(1): 1-25. doi: 10.3788/CO.20140701.001

Advances on techniques of breaking diffraction limitation using scattering medium

  • Received Date: 21 Oct 2013
  • Rev Recd Date: 17 Dec 2013
  • Publish Date: 25 Jan 2014
  • This paper provides the state-of-art review to the research works in diffraction-limit breaking focusing and imaging. Firstly, the research background and significance of the research in this field are given, and the well-developed super-resolution methods and the definition of scattering media towards diffraction-limit breaking imaging are also introduced. Secondly, the time reversal technique utilizing the scattering property in acoustics and electromagnetics for signal compressing and focusing are specified. The realization method of time reversal in domain of optics is presented. As a foundation for better understanding, the advantages brought about by inserting a plate of scattering media into certain optical imaging system are further elaborated. Thirdly, this review analyzes the serial feedback controlling method, optical phase conjugation and the transmission measurement based on phase conjugation for finest focusing. The groundbreaking transmission matrix measurement in both spatial and spatial frequent domain is introduced, which is followed by the preparation of scattering media aiming at the far-field and wide-field diffraction-limit breaking imaging using transmission matrix method. Finally, the advances and prospect on techniques of breaking diffraction limication using scattering medium are preposed.

     

  • loading
  • [1] ABBE E. Beitrge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv für mikroskopische Anatomie, 1873, 9(1):413-418. [2] STODOLNA A, ROUZ E A, L PINE F, et al.. Hydrogen atoms under magnification:direct observation of the nodal structure of stark states[J]. Phys. Rev. Lett., 2013, 110(21):213001-5. [3] HANSSEN K Ø, SCHULER B, WILLIAMS A J, et al.. A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin a and b: Highly modified halogenated dipeptides from thuiaria breitfussi[J]. Angewandte Chemie, 2012, 124(49):12404-12407. [4] BETZIG E, TRAUTMAN J K. Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science, 1992, 257(5067):189-195. [5] BOLTASSEVA A, ATWATER H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015):290-291. [6] PENDRY J B. Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18):3966-3969. [7] ZHANG X, LIU Z. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6):435-441. [8] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Optics Lett., 1994, 19(11):780-782. [9] BERNING S, WILLIG K I, STEFFENS H, et al.. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068):551. [10] RITTWEGER E, HAN K Y, IRVINE S E, et al.. Sted microscopy reveals crystal colour centres with nanometric resolution[J]. Nat. Photon., 2009, 3(3):144-147. [11] JONES S A, SHIM S H, HE J, et al.. Fast, three-dimensional super-resolution imaging of live cells[J]. Nature Methods, 2011, 8(6):499-505. [12] RUST M J, BATES M, ZHUANG X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(storm)[J]. Nature Methods, 2006, 3(10):793-796. [13] SUBACH F V, PATTERSON G H, MANLEY S, et al.. Photoactivatable mcherry for high-resolution two-color fluorescence microscopy[J]. Nat. Meth., 2009, 6(2):153-159. [14] BETZIG E, PATTERSON G H, SOUGRAT R, et al.. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645. [15] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086. [16] BATES M, HUANG B, DEMPSEY G T, et al.. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749. [17] HUANG B, BABCOCK H, ZHUANG X. Breaking the diffraction barrier:super-resolution imaging of cells[J]. Cell, 2010, 143(7):1047-1058. [18] ZHUANG X. Nano-imaging with storm[J]. Nature Photonics, 2009, 3(7):365. [19] 石顺祥, 王学恩, 刘劲松. 物理光学与应用光学[M].西安:西安电子科技大学出版社, 2008. SHI SH X, WANG X E, LIU J S. Physical Optics and Applied Optics[M]. Xi'an:Xidian University Press, 2008.(in Chinese) [20] GOODMAN J W. Introduction to Fourier Optics[M]. New York:McGRAW-HILL, 1996. [21] LAGENDIJK A, VAN TIGGELEN B, WIERSMA D S. Fifty years of anderson localization[J]. Phys. Today, 2009, 62(8):24-29. [22] WIERSMA D S, BARTOLINI P, LAGENDIJK A, et al.. Localization of light in a disordered medium[J]. Nature, 1997, 390(6661):671-673. [23] SKIPETROV S E. Langevin description of speckle dynamics in nonlinear disordered media[J]. Physical Review E, 2003, 67(1):016601. [24] GUAN Y, KATZ O, SMALL E, et al.. Polarization control of multiply scattered light through random media by wavefront shaping[J]. Optics Letters, 2012, 37(22):4663-4665. [25] TRIPATHI S, PAXMAN R, BIFANO T, et al. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media[J]. Optics Express, 2012, 20(14):16067-16076. [26] PAUDEL H P, STOCKBRIDGE C, MERTZ J, et al.. Focusing polychromatic light through strongly scattering media[J]. Opt. Express, 2013, 21(14):17299-17308. [27] KIM D, SEO K, CHOI W, et al.. Detection of evanescent waves using disordered nanowires[J]. Optics Communications, 2013, 297:1-6. [28] ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York:John Wiley & Sons, 1999. [29] SHENG P. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena[M]. Berlin Heidelberg:Springer, 2006. [30] TOURIN A, FINK M, DERODE A. Multiple scattering of sound[J]. Waves in Random Media, 2000, 10(4):R31-R60. [31] LEE P A, RAMAKRISHNAN T V. Disordered electronic systems[J]. Rev. Modern Physics, 1985, 57(2):287. [32] MARGERIN L, CAMPILLO M, VAN TIGGELEN B. Radiative transfer and diffusion of waves in a layered medium:new insight into coda q[J]. Geophysical J. International, 1998, 134(2):596-612. [33] FINK M. Acoustic time-reversal mirrors. Imaging of Complex Media with Acoustic and Seismic Waves[C]. Imaging of Complex Media with Acoustic and Seismic Waves, Berlin, Germany, 26 April-8 May, 1999, 2002:17-42. [34] FINK M. Time-reversed acoustics[J]. Sci. Am., 1999, 281(5):91-97. [35] LEROSEY G, DE ROSNY J, TOURIN A, et al.. Time reversal of electromagnetic waves[J]. Phys. Rev. Lett., 2004, 92(19):193904. [36] LEROSEY G, DE ROSNY J, TOURIN A, et al.. Focusing beyond the diffraction limit with far-field time reversal[J]. Science, 2007, 315(5815):1120-1122. [37] DE ROSNY J, FINK M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink[J]. Phys. Rev. Lett., 2002, 89(12):124301. [38] FINK M, TANTER M. Multiwave imaging and super resolution[J]. Phys. Today, 2010, 63:28. [39] PRADA C, FINK M. Eigenmodes of the time reversal operator:a solution to selective focusing in multiple-target media[J]. Wave Motion, 1994, 20(2):151-163. [40] GOUPILLAUD P L. An approach to inverse filtering of near-surface layer effects from seismic records[J]. Geophysics, 1961, 26(6): 54-760. [41] PAULRAJ A, NABAR R, GORE D. Introduction to Space-time WIRELESS COMmunications[M]. Cambridge, UK:Cambridge University Press, 2003. [42] POPOFF S M, LEROSEY G, FINK M, et al.. Controlling light through optical disordered media:transmission matrix approach[J]. New J. Phys., 2011, 13:123021. [43] LEMOULT F, FINK M, LEROSEY G. A polychromatic approach to far-field superlensing at visible wavelengths[J]. Nat. Commun., 2012, 3:889. [44] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 2007, 32(16):2309-2311. [45] YAQOOB Z, PSALTIS D, FELD M S, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nat. Photon., 2008, 2(2):110-115. [46] VELLEKOOP I M, LAGENDIJK A, MOSK A P. Exploiting disorder for perfect focusing[J]. Nature Photonics, 2010, 4(5):320-322. [47] 滕树云, 刘立人, 云茂金, 等. 提高能量密度的超衍射极限激光光束相位补偿技术[J]. 光学学报, 2005, 25(4):439-442. TENG SH Y, LIU L R, YUN M J, et al.. Phase compensative technology for the beam beyond the diffraction limits with high power[J]. Acta Optica Sinica, 2005, 25(4):439-442.(in Chinese) [48] FREUND I, ROSENBLUH M, FENG S. Memory effects in propagation of optical waves through disordered media[J]. Phys. Rev. Lett., 1988, 61(20):2328-2331. [49] POPOFF S M, LEROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics:an approach to the study and control of light propagation in disordered media[J]. Physical Review Lett., 2010, 104(10):100601-4: [50] VAN PUTTEN E, AKBULUT D, BERTOLOTTI J, et al.. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical Review Letters, 2011, 106(19):193905. [51] AKBULUT D, HUISMAN T J, VAN PUTTEN E G, et al.. Focusing light through random photonic media by binary amplitude modulation[J]. Opt. Express, 2011, 19(5):4017-4029. [52] VELLEKOOP I M, AEGERTER C M. Scattered light fluorescence microscopy: Imaging through turbid layers[J]. Optics Letters, 2010, 35(8):1245-1247. [53] MOSK A. Imaging and focusing through turbid media[C]. OSA Technical Digest(online). 2013:JW1A.1. [54] LEROSEY G, FINK M. Acousto-optic imaging:merging the best of two worlds[J]. Nature Photonics, 2013, 7(4):265-267. [55] JUDKEWITZ B, WANG Y M, HORSTMEYER R, et al.. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light(trove)[J]. Nature Photonics, 2013, 7(4):300-305. [56] CUI M. Parallel wavefront optimization method for focusing light through random scattering media[J]. Optics Letters, 2011, 36(6):870-872. [57] CUI M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media[J]. Optics Express, 2011, 19(4):2989-2995. [58] CONKEY D B, CARAVACA-AGUIRRE A M, NIV E, et al.. High-speed phase-control of wavefronts with binary amplitude dmd for light control through dynamic turbid media[C]. SPIE MOEMS-MEMS, 2013:861701-6. [59] MCDOWELL E J, CUI M, VELLEKOOP I M, et al.. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation[J]. J. Biomedical Optics, 2010, 15(2):025004. [60] YAQOOB Z, PSALTIS D, FELD M S, et al.. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics, 2008, 2(2):110-115. [61] JANG M, SENTENAC A, YANG C. Optical phase conjugation(opc)-assisted isotropic focusing[J]. Optics Express, 2013, 21(7):8781-8792. [62] POPOFF S M, LEROSEY G, FINK M, et al.. Image transmission through an opaque material[J]. Nature Communications, 2010, 1(1):81. [63] MAIRE G, DRSEK F, GIRARD J, et al. Experimental demonstration of quantitative imaging beyond abbe's limit with optical diffraction tomography[J]. Phys. Rev. Lett., 2009, 102(21):213905. [64] MAIRE G, GIRARD J, DRSEK F, et al.. Experimental inversion of optical diffraction tomography data with a nonlinear algorithm in the multiple scattering regime[J]. J. Modern Optics, 2010, 57(9):746-755. [65] MONTALDO G, TANTER M, FINK M. Real time inverse filter focusing through iterative time reversal[J]. Acoustical Society of America, 2004, 115(2):768-775. [66] TANTER M, THOMAS J L, FINK M. Time reversal and the inverse filter[J]. J. Acoust. Soc. Am., 2000, 108:223-234. [67] MOSK A P, LAGENDIJK A, LEROSEY G, et al.. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics, 2012, 6(5):283-292. [68] CHOI Y, YANG T D, FANG-YEN C, et al.. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium[J]. Phys. Rev. Lett., 2011, 107(2):023902. [69] HULST H C, VAN DE HULST H. Light Scattering:By Small Particles[M]. Courier Dover Publications, 1957. [70] PUTTEN E G V. Focussing of light inside turbid media[C]. Enschede:University of Twente Master of Science, 2007. [71] VELLEKOOP I M, PUTTEN E G V, LAGENDIJK A, et al.. Demixing light paths inside disordered metamaterials[J]. Optics Express, 2008, 16(1):67-80. [72] GOODMAN J W. Statistical Optics[M]. New York:Wiley-Interscience, 1985. [73] GUMBEL E, GREENWOOD J A, DURAND D. The circular normal distribution:theory and tables[J]. J. American Statistical Association, 1953, 48(261):131-152. [74] 黄远辉. 光学超衍射极限成像中随机介质传输矩阵获取方法研究[D].西安:西安电子科技大学, 2013. HUANG Y H. Optical transmission matrix measurement of random scattering media for diffraction-limit breaking imaging[D]. Xi'an:Xidian University, 2013.(in Chinese) [75] CHOI W, FANG-YEN C, BADIZADEGAN K, et al.. Tomographic phase microscopy[J]. Nature Methods, 2007, 4(9):717-719. [76] TOURIN A, DERODE A, FINK M. Sensitivity to perturbations of a time-reversed acoustic wave in a multiple scattering medium[J]. Phys. Rev. Lett., 2001, 87(27):274301. [77] LEMOULT F, LEROSEY G, DE ROSNY J, et al.. Manipulating spatiotemporal degrees of freedom of waves in random media[J]. Phys. Rev. Lett., 2009, 103(17):173902. [78] AUBRY A, DERODE A. Singular value distribution of the propagation matrix in random scattering media[J]. Waves Random and Complex Media, 2010, 20(3):333-363. [79] MARCHENKO V A, PASTUR L A. Distribution of eigenvalues for some sets of random matrices[J]. Sbornik:Mathematics, 1967, 72(114):507-536. [80] WIGNER E P. Random matrices in physics[J]. Society Industrial and Appl. Mathematics Review, 1967, 9(1):1-23. [81] CHOI W, MOSK A P, PARK Q H, et al.. Transmission eigenchannels in a disordered medium[J]. Phys. Rev. B, 2011, 83(13):134207. [82] KIM M, CHOI Y, YOON C, et al.. Maximal energy transport through disordered media with the implementation of transmission eigenchannels[J]. Nature Photonics, 2012, 6(9):583-587. [83] KOHLGRAF-OWENS T, DOGARIU A. Finding the field transfer matrix of scattering media[J]. Optics Express, 2008, 16(17):13225-13232. [84] VAN PUTTEN E G, MOSK A P. Viewpoint:the information age in optics:measuring the transmission matrix[J]. Physics, 2010, 3:22.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2467) PDF downloads(1245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return