Citation: | WANG Xun, JIN Chun-shui, KUANG Shang-qi, YU Bo. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1): 79-88. doi: 10.3788/CO.20140701.079 |
[1] BAKSHI V. EUV Lithography[M]. Bellingham:SPIE Press, 2008, 2(1):19-20.
[2] ATTWOOD D. Soft X-Rays and Extreme Ultraviolet Radiation:Principles and Applications[M]. Cambridge:Cambridge Press, 1999.
[3] RONSE K. Optical lithography—a historical perspective[J]. Comptes Rendus Physique, 2006, 7:844-857.
[4] 窦银萍, 孙长凯, 林景全. 激光等离子体极紫外光刻光源[J]. 中国光学, 2013, 6(1):20-33. DOU Y P, SUN CH K, LIN J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1):20-33.(in Chinese)
[5] FAY B. Advanced optical lithography development, from UV to EUV[J]. Microelectronic Eng., 2002, 61-62:11-24.
[6] 张立超. 极紫外多层膜技术研究进展[J]. 中国光学, 2010, 3(6):554-565. ZHANG L CH. Progress in EUV multilayer coating technologies[J]. Chinese Optics, 2010, 3(6):554-565.(in Chinese)
[7] SPILLER E. Soft X-Ray Optics[M]. Bellingham:SPIE Press, 1994.
[8] ZOETHOUT E, SIPOS G, VAN DE KRUIJS R W, et al.. Stress mitigation in Mo/Si multilayers for EUV lithography[J]. SPIE, 2003, 5037:872-878.
[9] 朱京涛, 宋竹青, 丁涛, 等. 极紫外Mg/SiC、Mg/Co多层膜的稳定性[J]. 光学 精密工程, 2013, 21(6):1380-1386. ZHU J T, SONG ZH Q, DING T, et al.. Stability of Mg/SiC, Mg/Co EUV multilayers[J]. Opt. Precision Eng., 2013, 21(6):1380-1386.(in Chinese)
[10] 陈波, 何飞. 月基地球等离子体层极紫外成像仪的光学设计[J]. 光学 精密工程, 2011, 19(9):2057-2062. CHEN B, HE F. Optical design of moon-based earth's plasmaspheric extreme ultraviolet imager[J]. Opt. Precision Eng., 2011, 19(9):2057-2062.(in Chinese)
[11] MEILING H, MEIJER H, BANINE V, et al.. First performance results of the ASML alpha demo tool[J]. SPIE, 2006, 6151:615-108.
[12] BOLLER K J, HAELBICH R P, HOGREFE H, et al.. Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation[J]. Nuclear Instruments and Methods in Phys. Res., 1983, 208:273-279.
[13] HOLLENSHEAD J, KLEBANOFF L. Modeling radiation-induced carbon contamination of extreme ultraviolet optics[J]. J. Vacuum Science Technology, 2006, B 24:64-82.
[14] NAITO T, TADANO M, TERUNUMA N, et al.. Investigation of carbon contamination on SR-irradiated devices[J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 2004, 527:624-631.
[15] MERTENS B, WEISS M, MEILING H, et al.. Progress in EUV optics lifetime expectations[J]. Microelectronic Eng., 2004, 73-74:16-22.
[16] OESTREICH S, KLEIN R, SCHOLZE F, et al.. Multilayer reflectance during exposure to EUV radiation[J]. SPIE, 2000, 4146:64-71.
[17] OKOROANYANWU U, JIANG A, DITTMAR K, et al.. Monitoring reticle molecular contamination in ASML EUV Alpha Demo Tool[J]. SPIE, 2010, 7636:76360H.
[18] OKOROANYANWU U, DITTMAR K, FAHR T, et al..Analysis and characterization of contamination in EUV reticles[J]. SPIE, 2010, 7636:76361Y.
[19] KYRIAKOU G, DAVIS D J, GRANT R B, et al.. Electron impact-assisted carbon film growth on Ru(0001):Implications for next-generation EUV lithography[J]. J. Phys. Chem., 2007, C111:4491-4494.
[20] MATSUNARI S, AOKI T, MURAKAMI K, et al.. Carbon deposition on multi-layer mirrors by extreme ultra violet ray irradiation[J]. SPIE, 2007, 6517:65172X-8.
[21] KOSTER N, MERTENS B, JANSEN R, et al..Molecular contamination mitigation in EUVL by environmental control[J]. Microelectronic Eng., 2002, 61-2:65-76.
[22] LEE D H, TOMIE T, JESSIE D, et al.. Detection of atomic-level surface contamination by extreme ultraviolet photoelectron spectroscopy technology[J]. IEEE Transactions on Plasma Science, 2009, 37:1490-1494.
[23] HILLERET N, SCHEUERLEIN C, TABORELLI M. The secondary-electron yield of airexposed metal surfaces[J]. Appl. Physics a-Materials Science Processing, 2003, 76:1085-1091.
[24] MALINOWSKI M E, STEINHAUS C, CLIFT W M, et al..Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications[J]. SPIE, 2002, 4688:442-453.
[25] CHEN J Q, LOUIS E, LEE C J, et al.. Detection and characterization of carbon contamination on EUV multilayer mirrors[J]. Optics Express, 2009, 17:16969-16979.
[26] COLLINS R W. In-situ ellipsometry as a diagnostic of thin-film growth-studies of amorphous-carbon[J]. J. Vacuum Science Technology a-Vacuum Surfaces, 1989, Films 7:1378-1385.
[27] VERHOEVEN J, LOS J. The influence of an electron beam on oxidation of polycrystalline nickel surfaces, monitored by disappearance potential spectroscopy(DAPS)[J]. Surface Science, 1976, 58:566-574.
[28] KIRSCHNER J, STAIB P. Disappearance potential spectroscopy[J]. Appl. Phys. A:Mater. Sci. amp;Processing, 1975, 6:99-109.
[29] STRELI C, WOBRAUSCHEK P, BAUER V, et al.. Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1997, 52:861-872.
[30] STRELI C, AIGINGER H, WOBRAUSCHEK P. Light-element analysis with a new spectrometer for total-reflection X-ray-fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1993, 48:163-170.
[31] STRELI C, WOBRAUSCHEK P, LADISICH W. Total-reflection X-ray-fluorescence analysis of light-elements under various excitation conditions[J]. X-Ray Spectrometry, 1995, 24:137-142.
[32] STRELI C, WOBRAUSCHEK P, AIGINGER H. A new X-ray tube for efficient excitation of low-z-elements with total reflection X-ray-fluorescence analysis[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 1991, 46:1351-1359.
[33] STRELI C, WOBRAUSCHEK P, SCHRAIK I. Comparison of SiLi detector and silicon drift detector for the determination of low Z elements in total reflection X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2004, 59:1211-1213.
[34] SCHNEIDER D, SCHWARZ T. A photo acoustic method for characterizing thin films[J]. Surface Coatings Technology, 1997, 91:136-146.
[35] VOREADES D. Secondary electron emission from thin carbon films[J]. Surface Science, 1976, 60:325-348.
|