Volume 8 Issue 2
Apr.  2015
Turn off MathJax
Article Contents
ZHANG Li-chao, CAI Xi-kun, SHI Guang. Optical coatings for DUV Lithography[J]. Chinese Optics, 2015, 8(2): 169-181. doi: 10.3788/CO.20150802.0169
Citation: ZHANG Li-chao, CAI Xi-kun, SHI Guang. Optical coatings for DUV Lithography[J]. Chinese Optics, 2015, 8(2): 169-181. doi: 10.3788/CO.20150802.0169

Optical coatings for DUV Lithography

  • Received Date: 21 Nov 2014
  • Accepted Date: 13 Feb 2015
  • Publish Date: 25 Apr 2015
  • Deep-ultraviolet(DUV) is the shortest wavelength of conventional optical techniques. With the wavelength shrinks, DUV optical coatings are confronted with a series of technical problems. As a kind of typical ultra precision optical system, DUV lithography system proposes stringent requirements on DUV coating optics. In this paper, coating materials and the coating design procedures of DUV coatings are summarized. Then, key problems on the guarantee of optical properties are discussed such as coating deposition techniques, surface figure preservation of coated optics, coating thickness distribution correction of large curved surfaces. Finally, detailed analysis for the environmental adaptability of DUV coatings are made to critical factors such as the environmental contaminations and the laser irritation characters. The above analysis points out directions to breakthrough bottlenecks on the development of DUV lithograph coatings and meet the requirements of ultra-precision DUV optical systems.

     

  • loading
  • [1]
    [1] BRUNING J. Optical lithography 40 years and holding[J]. SPIE,2007,6520:652004.
    [2]
    [2] 薛春荣,范正修,邵建达.真空紫外光学薄膜及薄膜材料[J].激光与光电子学进展,2008,45(1):57-64. XUE CH R,FAN ZH X,SHAO J D. Vaccum ultraviolet optical coatings and film materials[J]. Laser & Optoelectronics Progress,2008,45(1):57-64.(in Chinese)
    [3]
    [3] LINGG L,MACLEOD H. Exploring the crystalline microstructure of thin films using a series of lanthanide trifluorides as a probe[J]. Conference of Optical Interference Coatings,2001,TuE2:1-3.
    [4]
    [4] LINGG L. Lanthanide trifluoride thin films structure, composition, and optical structures[D]. Ann Arbur,USA:the University of Arizona,1990.
    [5]
    [5] CHENG-CHUNG L,MING-CHUNG L,MASAAKI K,et al.. Characterization of AlF3 thin films at 193 nm by thermal evaporation[J]. Appl. Opt.,2005,44(34):7333-7338.
    [6]
    [6] CHINDAUDOM P,VEDAM K. Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry[J]. Opt. Lett.,1992,17(7):538-540.
    [7]
    [7] CHUN G,MINGDONG K,DAWEI L,et al.. Microstructure-related properties of magnesium fluoride films at 193 nm by oblique-angle deposition[J]. Opt. Express,2013,21(8):960-967.
    [8]
    [8] 姚汉民,胡松,刑廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社,2006. YAO H,HU S,XING T. Optical Projection Exposure Technology of Micro and Nano Fabrication[M]. Bejing:Beijing University of Technology Press,2006.(in Chinese)
    [9]
    [9] GEH B,RUOFF J,ZIEMMERMANN J,et al.. The impact of projection lens polarization properties on lithographic process at hyper-NA[J]. SPIE,2007,6520:65200F.
    [10]
    [10] KELKAR P,TIRRI B,WILKLOW R,et al.. Deposition and characterization of challenging DUV coatings[J]. SPIE,2008,7067:706708.
    [11]
    [11] YANGHUI L,WEIDONG S,YUEGUANG Z,et al.. Fabrication and measurement of low polarization anti-reflection coating at 248 nm[J]. Optik,2013,124(13):1441-1444.
    [12]
    [12] 廖延彪.偏振光学[M].北京:科学出版社,2003. LIAO Y B. Polarization Optics[M]. Bejing:Science Press,2003.(in Chinese)
    [13]
    [13] ARTEAGA O,FREUDENTHAL J,WANG B,et al.. Mueller matrix polarimetry with four photoelastic modulators:theory and calibration[J]. Appl. Opt.,2012,51(28):6805-6817.
    [14]
    [14] ZACZEK C,MULLENDER S,ENKISCH H,et al.. Coatings for next generation lithography[J]. SPIE,2008,7101:71010X.
    [15]
    [15] STENZEL O,WILBRANDT S,SCHURMANN,et al.. Tailored nanocomposite coatings for optics[J]. Conference of Optical Interference Coatings,2010,2010,MD2:1-3.
    [16]
    [16] CABFWNU J,SCHREIBER H,WANF J. Dense homogeneous fluoride films for DUV elements and method of preparing same:US Patent 8169705B2[R],2012.
    [17]
    [17] BAUER H,HELLER M,KAISER N. Optical coatings for UV photolithography systems[J]. SPIE,1996,2776:353-365.
    [18]
    [18] TAKI Y,WARANABE S,TANAKA A. Postfluorination of fluoride films for vacuum-ultraviolet lithography to improve their optical properties[J]. Appl. Opt.,2006,45(7):1380-1385.
    [19]
    [19] BISCHOFF M,SODE M,GABLER D,et al.. Metal fluoride coatings prepared by ion-assisted deposition[J]. SPIE,2008,7101:71010L.
    [20]
    [20] AIKO O. Ion beam sputtering of fluoride thin films for 193 nm applications[J]. Appl. Opt.,2014,53(4):A330-A333.
    [21]
    [21] YOSHIDA T,NISHIMOTO K,SEKINE K,et al.. Fluoride antireflection coatings for deep ultraviolet optics deposited by ion-beam sputtering[J]. Appl. Opt.,2006,45(7):1375-1379.
    [22]
    [22] IWAHORI,FURUTA,TAKI Y,et al.. Optical properties of fluoride thin films deposited by RF magnetron sputtering[J]. Appl. Opt.,2006,45(19):4598-4602.
    [23]
    [23] MURATA T,ISHIZAWA H,MOTOYAMA I,et al.. Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols[J]. Appl. Opt.,2006,46(7):1465-1468.
    [24]
    [24] MURATA T,HIEDA J,SAITO N,et al.. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nano-particle coatings covered with fluoro-alkylsilane self-assembled monolayer[J]. Appl. Opt.,2012,51(13):2298-2305.
    [25]
    [25] RUDISILL J. Design deposition process tradeoffs for high-performance optical coatings in the DUV spectral region[J]. SPIE,2004,5273:30-40.
    [26]
    [26] LICHAO Z,XIKUN C. High performance fluoride optical coatings for DUV optics[J]. SPIE,2014,9281:92810A.
    [27]
    [27] OTANI M,ITOH T,KUWABARA S,et al.. Optical coatings for the 157 nm full-field exposure tool FS1[J]. Conference of Optical Interference Coatings,2004,WF4:1-3.
    [28]
    [28] SPENCE P,KANOUFF M,CHAUDURI A. Film-stress-induced deformation of EUV reflective optics[J]. SPIE,1999,3676:724-734.
    [29]
    [29] 张立超,高劲松.基于遮挡矩阵的膜厚修正挡板的设计[J].光学精密工程,2013,21(11):2757-2763. ZHANG L CH,GAO J S. Design of uniformity correction masks based on shadow matrix[J]. Opt. Precision Eng.,2013,21(11):2757-2763.(in Chinese)
    [30]
    [30] CUNDING L,MINGDONG K,CHUN G,et al.. Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems[J]. Opt. Express,2012,21(8):23790-23797.
    [31]
    [31] LICHAO Z,XIKUN C. Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics[J]. 2013,2013,Article ID 160792:1-4.
    [32]
    [32] PIC N,MARTIN C,VITALIS M,et al.. Defectivity decrease in the photolithography process by AMC level reduction through implementation of novel fiteration and monitoring solutions[J]. SPIE,2010,7638:76380M.
    [33]
    [33] JUE W,MAIER R,DEWA P,et al., Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry[J]. Appl. Opt.,2007,46(16):3221-3226.
    [34]
    [34] BLOOMSTEIN,LIBERMANN V,ROTHSCHILD M,et al.. UV cleaning of contanminated 157-nm reticles[J]. SPIE,2001,4346:669-675.
    [35]
    [35] WELLS G,HERMANS J,WATSO R,et al.. Optical path and image performance monitoring of a full field 157 nm scanner[J]. SPIE,2004,5377:91-98.
    [36]
    [36] NAKASHIMA T,OHMURA Y,OGATA T,et al.. Thermal aberration control in projection lens[J]. SPIE,2008,6924:69241V.
    [37]
    [37] 武潇野,张立超,时光.应用于高性能光学薄膜表征的光声光热检测技术[J].中国光学,2014,7(5):701-711. WU X Y,ZHANG L CH,SHI G. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics,2014,7(5):701-711.(in Chinese)
    [38]
    [38] WILLAMOWSKI U,RISTAU D,WELSCH E. Measuring the absolute absorptance of optical laser components[J]. Appl. Opt.,1998,37(36):8362-8370.
    [39]
    [39] BINCHENG L,MARTIN S,WELSCH E. Pulsed top-hat beam thermal lens measurement on ultraviolet dielectric coatings[J]. Opt. Lett.,1999,24(20):1398-1400.
    [40]
    [40] MUHLIG C,BUBLITZ,PAA W. Laser induced deflection(LID) method for absolute absorption measurements of optical materials and thin films[J]. SPIE,2011,8082:808225.
    [41]
    [41] SCHAFER B,GLOGER J,LEINHOS U,et al.. Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics[J]. Opt. Express,2009,25(17):23025-23036.
    [42]
    [42] LIBERMAN V,ROTHSCHILD M,SEDLACEK J,et al.. Marathon testing of optical materials for 193-nm lithographic applications[J]. SPIE,1999,3578:1-15.
    [43]
    [43] CHO B,DANIELEWICZ E,RUDISILL E. Absorption measurement of high-reflectance coated mirrors at 193 nm with a Shack Hartmann wave[J]. Opt. Eng.,2012,51(2):121803.
    [44]
    [44] NⅡSAKA S,WATANABE Y. Laser durability improvement of deep UV fluoride coatings[J]. SPIE,2008,7132:71320H.
    [45]
    [45] BLASCHKE H,RISTAU D,WELSCH E,et al.. Absolute measurements of nonlinear absorption near LIDT at 193 nm[J]. SPIE,2001,4347:447-453.
    [46]
    [46] MANN K,APEL O,ECKERT G,et al.. Testing of optical components for microlithography at 193 nm and 157 nm[J]. SPIE,2001,4346:1340-1348.
    [47]
    [47] 赵灵,武潇野,谷永强,等.激光量热法测量深紫外氟化物薄膜吸收[J].中国激光,2014,41(8):0807001. ZHAO L,WU X Y,GU Y Q,et al.. Measuring the absorptance of deep ultraviolet fluoride coatings with laser calorimetry[J]. Chinese J. Lasers,2014,41(8):0807001.(in Chinese)
    [48]
    [48] APEL O,MANN K,ZOLLER A,et al.. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Appl. Opt.,2000,39(18):3165-3169.
    [49]
    [49] APEL O,MANN K,MAROWSKY G. Nonlinear thickness dependence of two-photon absorptance in Al2O3 films[J]. Appl. Phys. A,2000,71:593-596.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(2253) PDF downloads(963) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return