Volume 8 Issue 6
Dec.  2015
Turn off MathJax
Article Contents
PENG Li-rong, MA Zhan-long, WANG Gao-wen, WANG Fei, WANG Dong-fang. Key technology of ultra-thin optical element precision manufacture[J]. Chinese Optics, 2015, 8(6): 964-970. doi: 10.3788/CO.20150806.0964
Citation: PENG Li-rong, MA Zhan-long, WANG Gao-wen, WANG Fei, WANG Dong-fang. Key technology of ultra-thin optical element precision manufacture[J]. Chinese Optics, 2015, 8(6): 964-970. doi: 10.3788/CO.20150806.0964

Key technology of ultra-thin optical element precision manufacture

  • Received Date: 08 Jun 2015
  • Accepted Date: 16 Jul 2015
  • Publish Date: 25 Jan 2015
  • Because of the difficulty to fabricate the ultra-thin optical element, this paper presents an efficient, advanced ultra-thin optical components integrated processing method to resolve the deformation problem. This method integrates precision grinding, precision polishing, ion beam figuring and other advanced technologies to acquire high-precision surface accuracy. In the grinding stage, the experiment uses force analysis and error compensate to reduce surface error caused by deformation. In the polishing stage, the experiment utilizes multiple iterative process to achieve surface error fast weaken .In the ion beam figuring stage, the experiment takes advantage of unstressed and non-contact of this processing method to achieve high-precision surface machining. Coring square material is chosen for the processing experiments. The result shows that the surface error has reached the level of ultra-precision optical components, and the final surface accuracy is PV=25 nm, RMS=1.5 nm. This method can be widely used for high-precision machining of ultra-thin optical components.

     

  • loading
  • [1]

    [2]

    [3]

    [4]

    [5]

    [6]

    [7]

    [8]

    [9]

    [10]

    [11]

    [12]

    [13]

    [14]

    [15]

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(1900) PDF downloads(1072) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return