Based on the principle of the intersection measurement, the mathematical model of measuring the target localization for airborne electro-optical platform(EOP) is established. Firstly, five coordinate systems are performed and transformations of different coordinate systems are given. Under the geocentric coordinate system, with the measurements of EOP pose angles, the aircraft position and the aircraft attitude, the mathematical expression of straight line segment between the EOP and the target point can be determined based on the transformation of coordinate system, some of which have been used to define an objective function of intersection measurement. In order to estimate the geodetic coordinate of the target, least squares(LS) algorithm is used to minimize the objective function. The matrix equation about 3D geocentric coordinate of target can be computed to be determined, solving this matrix equation and transforming from geocentric coordinates system to geodetic coordinates system, and the estimate of the geodetic coordinates of the target can be obtained. Finally, the intersecting localization experiment is performed on a measurements sample. The result shows that the intersecting location is close to the true target location, the RMS of longitude is 0.65", the RMS of latitude is 0.82" and the RMS of altitude is 5 m. This method is efficient and will be useful to localization of target for airborne EOP.