Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
ZHENG Ai-xian, ZHANG Xiao-long, LIU Xiao-long. Application in nucleic acid functionalized nanoprobe in cellular fluorescence imaging[J]. Chinese Optics, 2018, 11(3): 363-376. doi: 10.3788/CO.20181103.0363
Citation: ZHENG Ai-xian, ZHANG Xiao-long, LIU Xiao-long. Application in nucleic acid functionalized nanoprobe in cellular fluorescence imaging[J]. Chinese Optics, 2018, 11(3): 363-376. doi: 10.3788/CO.20181103.0363

Application in nucleic acid functionalized nanoprobe in cellular fluorescence imaging

Funds:

National Natural Science Foundation of China 21705022

National Natural Science Foundation of China 21605021

National Natural Science Foundation of China 61575044

More Information
  • Corresponding author: LIU Xiao-long, E-mail:xiaoloong.liu@gmail.com
  • Received Date: 26 Jan 2018
  • Rev Recd Date: 28 Feb 2018
  • Publish Date: 01 Jun 2018
  • Nucleic acid is a substance that carries genetic information. It exists either in nature or can be synthesized by established techniques. Nucleic acid sequences with special functions, such as aptamers and DNAzymes, can also be selected using in vitro techniques. Nucleic acids hybridize according to the principle of Watson-Crick base pairing, and have strong specificity. Whether through sequence design or in vitro screening, nucleic acid probes play an important role in the analysis and imaging applications of biomarkers. In addition, nanomaterials can be used to construct nucleic acid functionalized nanoprobes, which can protect the loaded nucleic acids from being degraded by nucleases and can enter cells without the aid of the transfection reagents. Therefore, nanomaterials have great advantages in the application of cell fluorescence imaging. In order to solve the problem of low intracellular biomarker content and thus difficult to detect, a variety of imaging signal amplification methods suitable for the cellular level have been developed to achieve highly sensitive imaging of low-abundance biomarkers. In this paper, the application of nucleic acid functionalized nanoprobes in cellular fluorescence imaging, including antisense oligonucleotide functionalized nanoprobes, aptamer functionalized nanoprobes and DNAzyme functionalized nanoprobes and that in imaging signal amplification are reviewed.

     

  • loading
  • [1]
    TORABI S F, LU Y. Functional DNA nanomaterials for sensing and imaging in living cells[J]. Curr. Opin Biotechnol., 2014, 28:88-95. doi: 10.1016/j.copbio.2013.12.011
    [2]
    LI J, MO L, LU C H, et al.. Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications[J]. Chem. Soc. Rev., 2016, 45(5):1410-1431. doi: 10.1039/C5CS00586H
    [3]
    LIANG H, ZHANG X B, LV Y, et al.. Functional DNA-containing nanomaterials:cellular applications in biosensing, imaging, and targeted therapy[J]. Acc Chem. Res., 2014, 47(6):1891-1901. doi: 10.1021/ar500078f
    [4]
    MIAO P, TANG Y, WANG B, et al.. Near-infrared Ag2S quantum dots-based DNA logic gate platform for miRNA diagnostics[J]. Anal. Chem., 2016, 88(15):7567-7573. doi: 10.1021/acs.analchem.6b01044
    [5]
    CHENG W, YAN W, MIAO P. TNF-α responsive DNA star trigon formation from four hairpin probes and the analytical application[J]. Sci. China. Chem., 2017, 60(3):405-409. doi: 10.1007/s11426-016-0259-4
    [6]
    CHAKRABORTY K, VEETIL A T, JAFFREY S R, et al.. Nucleic acid-based nanodevices in biological imaging[J]. Annu. Rev. Biochem., 2016, 85(1):349-373. doi: 10.1146/annurev-biochem-060815-014244
    [7]
    LI J, CHENG F, HUANG H, et al.. Nanomaterial-based activatable imaging probes:from design to biological applications[J]. Chem. Soc. Rev., 2015, 44(21):7855-7880. doi: 10.1039/C4CS00476K
    [8]
    LUBY B M, CHARRON D M, MACLAUGHLIN C M, et al.. Activatable fluorescence:from small molecule to nanoparticle[J]. Adv. Drug Deliv. Rev., 2016, 113:97-121. http://cn.bing.com/academic/profile?id=a7aeb37e5bac1824f6aa3ca6fbc1128f&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    HU R, ZHANG X B, KONG R M, et al.. Nucleic acid-functionalized nanomaterials for bioimaging applications[J]. J. Mater. Chem., 2011, 21(41):16323-16334. doi: 10.1039/c1jm12588e
    [10]
    ZHENG J, YANG R H, SHI M L, et al.. Rationally designed molecular beacons for bioanalytical and biomedical applications[J]. Chem. Soc. Rev., 2015, 44(10):3036-3055. doi: 10.1039/C5CS00020C
    [11]
    FARRERA C, ANDON F T, FELIU N. Carbon nanotubes as optical sensors in biomedicine[J]. ACS Nano, 2017, 11(11):10637-10643. doi: 10.1021/acsnano.7b06701
    [12]
    ZHU X, LIU Y, LI P, et al.. Applications of graphene and its derivatives in intracellular biosensing and bioimaging[J]. Analyst, 2016, 141(15):4541-4553. doi: 10.1039/C6AN01090C
    [13]
    PENG H Y, TANG H, JIANG J H. Recent progress in gold nanoparticle-based biosensing and cellular imaging[J]. Sci. China Chem., 2016, 59(7):783-793. doi: 10.1007/s11426-016-5570-7
    [14]
    HILDEBRANDT N, SPILLMANN C M, ALGAR W R, et al.. Energy transfer with semiconductor quantum dot bioconjugates:a versatile platform for biosensing, energy harvesting, and other developing applications[J]. Chem. Rev., 2017, 117(2):536-711. doi: 10.1021/acs.chemrev.6b00030
    [15]
    ZHANG C, DING C, XIANG D, et al.. DNA functionalized fluorescent quantum dots for bioanalytical applications[J]. Chinese J. Chem., 2016, 34(3):317-325. doi: 10.1002/cjoc.v34.3
    [16]
    SANTANGELO P J. Molecular beacons and related probes for intracellular RNA imaging[J]. WIREs Nanomedicine and Nanobiotechnology, 2010, 2(1):11-19. doi: 10.1002/wnan.52
    [17]
    杨立敏, 刘波, 李娜, 等.纳米荧光探针用于核酸分子的检测及成像研究[J].化学学报, 2017, 75:1047-1060. http://www.cnki.com.cn/Article/CJFDTotal-HXXB201711003.htm

    YANG L M, LIU B, LI N, et al.. Fluorescent nanoprobe for detection and imaging of nucleic acid molecules[J]. Acta Chim. Sinica, 2017, 75:1047-1060.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-HXXB201711003.htm
    [18]
    SEFEROS D S, GILJOHANN D A, HILL H D, et al..Nano-flares:probes for transfection and mRNA detection in living cells[J]. J. Am. Chem. Soc., 2007, 129(50):15477-15479. doi: 10.1021/ja0776529
    [19]
    CHOI C K K, LI J M, WEI K C, et al.. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells[J]. Methods Mol. Biol., 2017, 1570:155-164. doi: 10.1007/978-1-4939-6840-4
    [20]
    LI N, CHANG C, PAN W, et al.. A multicolor nanoprobe for detection and imaging of tumor-related mRNAs in living cells[J]. Angew Chem. Int. Ed., 2012, 51(30):7426-7430. doi: 10.1002/anie.201203767
    [21]
    LI J L, ZHONG X Q, CHENG F F, et al.. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging[J]. Anal. Chem., 2012, 84:4140-4146. doi: 10.1021/ac3003402
    [22]
    HE X, ZENG T, LI Z, et al.. Catalytic molecular imaging of microRNA in living cells by DNA-programmed nanoparticle disassembly[J]. Angew Chem. Int. Ed., 2016, 55(9):3073-3076. doi: 10.1002/anie.201509726
    [23]
    YANG Y, HUANG J, YANG X, et al.. FRET nanoflares for intracellular mRNA detection:avoiding false positive signals and minimizing effects of system fluctuations[J]. J. Am. Chem. Soc., 2015, 137(26):8340-8343. doi: 10.1021/jacs.5b04007
    [24]
    CHEN J J, TANG L J, CHU X, et al.. Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis[J]. Analyst, 2017, 142(7):3048-3061. http://cn.bing.com/academic/profile?id=2d3d9e3d176fe3a5cba2513c7ffb1f21&encoded=0&v=paper_preview&mkt=zh-cn
    [25]
    BI S, YUE S, ZHANG S. Hybridization chain reaction:a versatile molecular tool for biosensing, bioimaging, and biomedicine[J]. Chem. Soc. Rev., 2017, 46(14):4281-4298. doi: 10.1039/C7CS00055C
    [26]
    WU Z, LIU G Q, YANG X L, et al.. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA Imaging[J]. J. Am. Chem. Soc., 2015, 137(21):6829-6836. doi: 10.1021/jacs.5b01778
    [27]
    YANG D W, TANG Y G, MIAO P. Hybridization chain reaction directed DNA superstructures assembly for biosensing applications[J]. TrAC Trends in Analytical Chemistry, 2017, 94:1-13. doi: 10.1016/j.trac.2017.06.011
    [28]
    MENG H M, LIU H, KUAI H, et al..Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy[J]. Chem. Soc. Rev., 2016, 45(9):2583-2602. doi: 10.1039/C5CS00645G
    [29]
    YANG D, TANG Y, GUO Z, et al.. Proximity aptasensor for protein detection based on an enzyme-free amplification strategy[J]. Mol. Bio. Syst., 2017, 13:1936-1939. http://cn.bing.com/academic/profile?id=2cc603ee3e16511018446dc02f88fb6c&encoded=0&v=paper_preview&mkt=zh-cn
    [30]
    靳贵晓, 李娟, 杨黄浩.核酸适体的筛选及其在生物医学领域的研究进展[J].福州大学学报, 2016, 44(6):919-934. https://mall.cnki.net/qikan-SPJX201610046.html

    JIN G X, LI J, YANG H H. Research progress of aptamer screening and its application in biomedicine[J]. Journal of Fuzhou University, 2016, 44(6):919-934.(in Chinese) https://mall.cnki.net/qikan-SPJX201610046.html
    [31]
    ZHANG H, LI F, DEVER B, et al.. DNA-mediated homogeneous binding assays for nucleic acids and proteins[J]. Chem. Rev., 2013, 113(4):2812-2841. doi: 10.1021/cr300340p
    [32]
    XING H, WONG N Y, XIANG Y, et al.. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery[J]. Curr. Opin. Chem. Biol., 2012, 16:429-435. doi: 10.1016/j.cbpa.2012.03.016
    [33]
    SUN H G, TAN W H, ZU Y L. Aptamers:versatile molecular recognition probes for cancer detection[J]. Analyst, 2016, 141(2):403-415. doi: 10.1039/C5AN01995H
    [34]
    LU D, HE L, ZHANG G, et al.. Aptamer-assembled nanomaterials for fluorescent sensing and imaging[J]. Nanophotonics, 2017, 6(1):109-121. http://cn.bing.com/academic/profile?id=6032d950d7888ccbaef6076faab90cde&encoded=0&v=paper_preview&mkt=zh-cn
    [35]
    DONG J T, ZHAO M P. In-vivo fluorescence imaging of adenosine 5'-triphosphate[J]. Trends in Analytical Chemistry, 2016, 80:190-203. doi: 10.1016/j.trac.2016.03.020
    [36]
    黄子珂, 刘超, 付强强, 等.核酸适配体荧光探针在生化分析和生物成像中的研究进展[J].应用化学, 2018, 35(1):28-39. doi: 10.11944/j.issn.1000-0518.2018.01.170363

    HUANG Z K, LIU CH, FU Q Q, et al.. Aptamer-based fluorescence probe for bioanalysis and bioimaging[J]. Chinese Journal of Applied Chemistry, 2018, 35(1):28-39. (in Chinese) doi: 10.11944/j.issn.1000-0518.2018.01.170363
    [37]
    WANG J, ZHU G, YOUM, et al.. Assembly of aptamer on gold switch nanorods probes for and photosensitizer targeted photothermal and photodynamic cancer therapy[J]. ACS Nano, 2012, 6(6):5070-5077. doi: 10.1021/nn300694v
    [38]
    CHEN T T, TIAN X, LIU C L, et al.. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor[J]. J. Am. Chem. Soc., 2015, 137(2):982-989. doi: 10.1021/ja511988w
    [39]
    KIM J K, CHOI K J, LEE M, et al.. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle[J]. Biomaterials, 2012, 33(1):207-217. doi: 10.1016/j.biomaterials.2011.09.023
    [40]
    LIU J, CAO Z, LU Y. Functional nucleic acid sensors[J]. Chem. Rev., 2009, 109:1948-1998. doi: 10.1021/cr030183i
    [41]
    ZHOU W H, LIU J W. Multi-metal-dependent nucleic acid enzymes[J]. Metallomics, 2018, 10(11):30-48. http://cn.bing.com/academic/profile?id=5b551e3bf84ea3ef42139801d851002b&encoded=0&v=paper_preview&mkt=zh-cn
    [42]
    MCGHEE C E, LOH K Y, LU Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells[J]. Curr. Opin Biotechnol., 2017, 45:191-201. doi: 10.1016/j.copbio.2017.03.002
    [43]
    MOKANY E, BONE S M, YOUNG P E, et al.. MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches[J]. J. Am. Chem. Soc., 2010, 132(3):1051-1059. doi: 10.1021/ja9076777
    [44]
    SONG P, XIANG Y, XING H, et al.. Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules[J]. Anal. Chem., 2012, 84(6):2916-2922. doi: 10.1021/ac203488p
    [45]
    LI L, FENG J, FAN Y, et al.. Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle[J]. Anal. Chem., 2015, 87(9):4829-4835. doi: 10.1021/acs.analchem.5b00204
    [46]
    YANG Y, HUANG J, YANG X, et al.. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells[J]. Anal. Chem., 2016, 88(11):5981-5987. doi: 10.1021/acs.analchem.6b00999
    [47]
    PENG H Y, LI X F, ZHANG H Q, et al.. A microRNA-initiated DNAzyme motor operating in living cells[J]. Nat. Commun., 2017, 8:14378. doi: 10.1038/ncomms14378
    [48]
    YANG Y, HUANG J, YANG X, et al.. Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells[J]. Anal. Chem., 2017, 89(11):5850-5856. doi: 10.1021/acs.analchem.7b00174
    [49]
    CHEN F, BAI M, CAO K, et al.. Fabricating MnO2 nanozymes as intracellular catalytic DNA circuit generators for versatile imaging of base-excision repair in living cells[J]. Adv. Funct. Mater., 2017, 27(45):1702748. doi: 10.1002/adfm.v27.45
    [50]
    HE D G, HE X, YANG X, et al.. A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures[J]. Chemical Science, 2017, 8(4):2832-2840. doi: 10.1039/C6SC04633A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(2555) PDF downloads(208) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return