Volume 11 Issue 3
Jun.  2018
Turn off MathJax
Article Contents
CHEN Jian, MENG Wen-chao, LING Xiao, DENG Sheng-song, MEI Qing-song. Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging[J]. Chinese Optics, 2018, 11(3): 377-391. doi: 10.3788/CO.20181103.0377
Citation: CHEN Jian, MENG Wen-chao, LING Xiao, DENG Sheng-song, MEI Qing-song. Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging[J]. Chinese Optics, 2018, 11(3): 377-391. doi: 10.3788/CO.20181103.0377

Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging

Funds:

National Natural Science Foundation of China 21305143

National Natural Science Foundation of China 21675038

Fundamental Research Funds for the Central Universities JZ2016YYPY0042

More Information
  • Corresponding author: MEI Qing-song, E-mail:qsmei@hfut.edu.cn
  • Received Date: 03 Jan 2018
  • Rev Recd Date: 15 Jan 2018
  • Publish Date: 01 Jun 2018
  • As an opened-bandgap derivative, graphene oxide greatly enriches its optical properties and extends its applications in sensing and imaging. In particular, graphene oxide-confined π-conjugated structures provide very favorable conditions for the construction of luminescent carbon materials. Nowadays, more and more works have reported that graphene oxide and its derivatives can generate multicolor fluorescent signals. However, systematically summarizing these studies to reveal the luminescence mechanism of graphene oxide are still relatively rare. In this paper, the synthesis of luminescent graphene oxide nanomaterials and their application in optical imaging are summarized, which provides some constructive suggestions for the further development of new luminescent graphene oxide materials.

     

  • loading
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. doi: 10.1126/science.1102896
    [2]
    SINGH V, JOUNG D, ZHAI L, et al.. Graphene based materials:Past, present and future[J]. Prog. Mater. Sci., 2011, 56(8):1178-1271. doi: 10.1016/j.pmatsci.2011.03.003
    [3]
    XU Y, SHI G, DUAN X. Self-assembled three-dimensional graphene macrostructures:synthesis and applications in supercapacitors[J]. Accounts Chem. Res., 2015, 48(6):1666-1675. doi: 10.1021/acs.accounts.5b00117
    [4]
    LIU M, ZHANG R, CHEN W. Graphene-supported nanoelectrocatalysts for fuel cells:synthesis, properties, and applications[J]. Chem. Rev., 2014, 114(10):5117-5160. doi: 10.1021/cr400523y
    [5]
    BONACCORSO F, SUN Z, HASAN T, et al.. Graphene photonics and optoelectronics[J]. Nat. Photonics, 2010, 4(9):611-622. doi: 10.1038/nphoton.2010.186
    [6]
    李正顺, 王岩, 王雷.Fe3+对石墨烯氧化物荧光淬灭机理的研究[J].中国光学, 2016, 9(5):569-578. http://www.chineseoptics.net.cn/CN/abstract/abstract9449.shtml

    LI ZH SH, WANG Y, WANG L. Fluorescence quenching mechanism of graphene oxide by Fe3+[J]. Chinese Optic, 2016, 9(5):569-578.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9449.shtml
    [7]
    万吉祥, 陈小源, 王聪.荧光石墨烯量子点的制备及其荧光机理分析[J].功能材料, 2017, 48(8):8024-8031. http://cdmd.cnki.com.cn/Article/CDMD-10280-1014008049.htm

    WAN J X, CHEN X Y, WANG C. Synthesis and photoluminescence mechanism of graphene quantum dots[J]. Journal of Functional Materials, 2017, 48(8):8024-8031.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10280-1014008049.htm
    [8]
    俞文英, 余陈欢, 方杰, 等.氧化石墨烯纳米载体的生物相容性研究进展[J].中国现代应用药学, 2017, 34(5):777-782. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201420004.htm

    YU W Y, YU C H, FANG J, et al.. Research progress on biocompatibility of graphene oxide as a nanocarrier[J]. Chinese Journal of Modern Applied Pharmacy, 2017, 34(5):777-782.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-KXTB201420004.htm
    [9]
    禚洪梅.尺寸均一的氧化石墨烯制备综述[J].轻工科技, 2017, 33(3):39-40+44. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL201010003059.htm

    GAO H M. Preparation of graphene oxide with uniform size[J]. Light Industry Science and Technology, 2017, 33(3):39-40+44.(in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL201010003059.htm
    [10]
    李绍娟, 甘胜, 沐浩然.石墨烯光电子器件的应用研究进展[J].新型炭材料, 2014, 29(5):329-356. http://mall.cnki.net/magazine/Article/XTCL201405001.htm

    LI SH J, GAN SH, MU H R. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5):329-356.(in Chinese) http://mall.cnki.net/magazine/Article/XTCL201405001.htm
    [11]
    STANKOVICH S, DIKIN D A, DOMMETT G H B, et al.. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286. doi: 10.1038/nature04969
    [12]
    KIM J, COTE L J, HUANG J X. Two dimensional soft material:new faces of graphene oxide[J]. Accounts Chem. Res., 2012, 45(8):1356-1364. doi: 10.1021/ar300047s
    [13]
    邓尧, 黄肖容, 邬晓龄.氧化石墨烯复合材料的研究进展[J].材料导报, 2012, 26(15):84-87. doi: 10.3969/j.issn.1005-023X.2012.15.016

    DENG Y, HUANG X R, WU X L. Review on graphene oxide composites[J]. Materials Review, 2012, 26(15):84-87.(in Chinese) doi: 10.3969/j.issn.1005-023X.2012.15.016
    [14]
    LI D, MULLER M B, GILJE S, et al.. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol, 2008, 3(2):101-105. doi: 10.1038/nnano.2007.451
    [15]
    LU C H, YANG H H, ZHU C L, et al.. A Graphene platform for sensing biomolecules[J]. Angew Chem. Int. Edit., 2009, 48(26):4785-4787. doi: 10.1002/anie.v48:26
    [16]
    SWATHI R S, SEBASTIAN K L. Resonance energy transfer from a dye molecule to graphene[J]. Journal of Chemical Physics, 2008, 129(5):. http://cn.bing.com/academic/profile?id=cef32be6e31e0ceda6edab3ee31b6140&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    SWATHI R S, SEBASTIAN K L. Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence[J]. The Journal of Chemical Physics, 2009, 130(8):086101. doi: 10.1063/1.3077292
    [18]
    PEI H, LI J, LV M, et al.. A Graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers[J]. J. Am. Chem. Soc., 2012, 134(33):13843-13849. doi: 10.1021/ja305814u
    [19]
    DONG H F, GAO W C, YAN F, et al.. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Anal. Chem., 2010, 82(13):5511-5517. doi: 10.1021/ac100852z
    [20]
    ZHANG C L, YUAN Y X, ZHANG S M, et al.. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide[J]. Angew Chem. Int. Edit., 2011, 50(30):6851-6854. doi: 10.1002/anie.201100769
    [21]
    LIU X Q, WANG F, AIZEN R, et al.. Graphene oxide/nucleic-acid-stabilized silver nanoclusters:functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs[J]. J. Am. Chem. Soc., 2013, 135(32):11832-11839. doi: 10.1021/ja403485r
    [22]
    BALAPANURU J, YANG J X, XIAO S, et al.. A Graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties[J]. Angew Chem. Int. Edit., 2010, 49(37):6549-6553. doi: 10.1002/anie.201001004
    [23]
    WEN Y, PENG C, LI D, et al.. Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(Ⅱ) ions with high sensitivity, selectivity and tunable dynamic range[J]. Chem. Commun.(Camb), 2011, 47(22):6278-6280. doi: 10.1039/c1cc11486g
    [24]
    LIU J, WANG C, JIANG Y, et al.. Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules[J]. Anal. Chem., 2013, 85(3):1424-1430. doi: 10.1021/ac3023982
    [25]
    JANG H, RYOO S R, KIM Y K, et al.. Discovery of HepatitisC Virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide[J]. Angew Chem. Int. Edit., 2013, 52(8):2340-2344. doi: 10.1002/anie.201209222
    [26]
    LIU B W, SUN Z Y, ZHANG X, et al.. Mechanisms of DNA sensing on graphene oxide[J]. Anal. Chem., 2013, 85(16):7987-7993. doi: 10.1021/ac401845p
    [27]
    CAO L, MEZIANI M J, SAHU S, et al.. Photoluminescence properties of graphene versus other carbon nanomaterials[J]. Accounts Chem. Res., 2013, 46(1):171-180. doi: 10.1021/ar300128j
    [28]
    HUANG H M, LI Z B, SHE J C, et al.. Oxygen density dependent band gap of reduced graphene oxide[J]. J. Appl. Phys., 2012, 111(5):. http://cn.bing.com/academic/profile?id=e208eb95478337777ad74170e72e707a&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    PAL S K. Versatile photoluminescence from graphene and its derivatives[J]. Carbon, 2015, 88:86-112. doi: 10.1016/j.carbon.2015.02.035
    [30]
    HONG G S, LEE J C, ROBINSON J T, et al.. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence[J]. Nat. Med., 2012, 18(12):1841-1846. doi: 10.1038/nm.2995
    [31]
    SUN X M, LIU Z, WELSHER K, et al.. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res., 2008, 1(3):203-212. doi: 10.1007/s12274-008-8021-8
    [32]
    ZHANG M F, OKAZAKI T, ⅡZUMI Y, et al.. Preparation of small-sized graphene oxide sheets and their biological applications[J]. J. Mater Chem. B, 2016, 4(1):121-127. doi: 10.1039/C5TB01800E
    [33]
    LUO Z T, VORA P M, MELE E J, et al.. Photoluminescence and band gap modulation in graphene oxide[J]. Appl. Phys. Lett., 2009, 94(11). http://cn.bing.com/academic/profile?id=c099499526b3e0d32b66ea6a9b8ff85e&encoded=0&v=paper_preview&mkt=zh-cn
    [34]
    CHEN J L, YAN X P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH[J]. Chem. Commun., 2011, 47(11):3135-3137. doi: 10.1039/c0cc03999c
    [35]
    SHANG J Z, MA L, LI J W, et al.. The origin of fluorescence from graphene oxide[J]. Sci. Rep-Uk, 2012, 2. http://cn.bing.com/academic/profile?id=489add63d5b90c3eaecf56cdf17c8226&encoded=0&v=paper_preview&mkt=zh-cn
    [36]
    GOKUS T, NAIR R R, BONETTI A, et al.. Making graphene luminescent by oxygen plasma treatment[J]. ACS Nano, 2009, 3(12):3963-3968. doi: 10.1021/nn9012753
    [37]
    MEI Q S, ZHANG K, GUAN G J, et al.. Highly efficient photoluminescent graphene oxide with tunable surface properties[J]. Chem. Commun., 2010, 46(39):7319-7321. doi: 10.1039/c0cc02374d
    [38]
    ZHANG K, YANG L, ZHU H J, et al.. Selective visual detection of trace trinitrotoluene residues based on dual-color fluorescence of graphene oxide-nanocrystals hybrid probe[J]. Analyst, 2014, 139(10):2379-2385. doi: 10.1039/C3AN02380J
    [39]
    MEI Q S, JIANG C L, GUAN G J, et al.. Fluorescent graphene oxide logic gates for discrimination of iron(3+) and iron(2+) in living cells by imaging[J]. Chem. Commun., 2012, 48(60):7468-7470. doi: 10.1039/c2cc31992f
    [40]
    CHIEN C T, LI S S, LAI W J, et al.. Tunable photoluminescence from graphene oxide[J]. Angew Chem. Int. Edit., 2012, 51(27):6662-6666. doi: 10.1002/anie.201200474
    [41]
    EXARHOS A L, TURK M E, KIKKAWA J M. Ultrafast spectral migration of photoluminescence in graphene oxide[J]. Nano Lett., 2013, 13(2):344-349. doi: 10.1021/nl302624p
    [42]
    MCDONALD M P, ELTOM A, VIETMEYER F, et al.. Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics[J]. Nano Lett., 2013, 13(12):5777-5784. doi: 10.1021/nl402057j
    [43]
    EDA G, LIN Y Y, MATTEVI C, et al.. Blue photoluminescence from chemically derived graphene oxide[J]. Adv. Mater., 2010, 22(4):505. doi: 10.1002/adma.v22:4
    [44]
    GALANDE C, MOHITE A D, NAUMOV A V, et al.. Quasi-molecular fluorescence from graphene oxide[J]. Sci. Rep-Uk, 2011, 1. http://cn.bing.com/academic/profile?id=e68de853c142a648f7bc195b6e7aee69&encoded=0&v=paper_preview&mkt=zh-cn
    [45]
    CUSHING S K, LI M, HUANG F Q, et al.. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J]. ACS Nano., 2014, 8(1):1002-1013. doi: 10.1021/nn405843d
    [46]
    THOMAS H R, VALLES C, YOUNG R J, et al.. Identifying the fluorescence of graphene oxide[J]. J. Mater. Chem. C, 2013, 1(2):338-342. doi: 10.1039/C2TC00234E
    [47]
    ROURKE J P, PANDEY P A, MOORE J J, et al.. The real graphene oxide revealed:stripping the oxidative debris from the graphene-like sheets[J]. Angew. Chem. Int. Ed., 2011, 50(14):3173-3177. doi: 10.1002/anie.201007520
    [48]
    NAUMOV A, GROTE F, OVERGAARD M, et al.. Graphene oxide:a one-versus two-component material[J]. J. Am. Chem. Soc., 2016, 138(36):11445-11448. doi: 10.1021/jacs.6b05928
    [49]
    TSUCHIYA T, TERABE K, AONO M. In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor[J]. Adv. Mater., 2014, 26(7):1087-1091. doi: 10.1002/adma.201304770
    [50]
    TSUCHIYA T, TSURUOKA T, TERABE K, et al.. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide[J]. ACS Nano., 2015, 9(2):2102-2110. doi: 10.1021/nn507363g
    [51]
    CHIEN C T, LI S S, LAI W J, et al.. Tunable photoluminescence from graphene oxide[J]. Angew Chem. Int. Edit., 2012, 51(27):6662-6666. doi: 10.1002/anie.201200474
    [52]
    MAITI R, MIDYA A, NARAYANA C, et al.. Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation[J]. Nanotechnology, 2014, 25(49):704. http://cn.bing.com/academic/profile?id=800c8ffe5d6603e977c6bc6183b7f5d3&encoded=0&v=paper_preview&mkt=zh-cn
    [53]
    MEI Q S, CHEN J, ZHAO J, et al.. Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging[J]. ACS Appl. Mater Inter., 2016, 8(11):7390-7395. doi: 10.1021/acsami.6b00791
    [54]
    GAN Z X, XIONG S J, WU X L, et al.. Mn2+-bonded reduced graphene oxide with strong radiative recombination in broad visible range caused by resonant energy transfer[J]. Nano Lett., 2011, 11(9):3951-3956. doi: 10.1021/nl202240s
    [55]
    PENG C, HU W B, ZHOU Y T, et al.. Intracellular imaging with a graphene-based fluorescent probe[J]. Small, 2010, 6(15):1686-1692. doi: 10.1002/smll.v6:15
    [56]
    FARROW B, KAMAT P V. CdSe quantum dot sensitized solar cells. shuttling electrons through stacked carbon nanocups[J]. J. Am. Chem. Soc., 2009, 131(31):11124-11131. doi: 10.1021/ja903337c
    [57]
    LI L L, LIU K P, YANG G H, et al.. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing[J]. Adv. Funct. Mater., 2011, 21(5):869-878. doi: 10.1002/adfm.201001550
    [58]
    HU S H, CHEN Y W, HUNG W T, et al.. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ[J]. Adv. Mater., 2012, 24(13):1748-1754. doi: 10.1002/adma.201104070
    [59]
    PAN D Y, ZHANG J C, LI Z, et al.. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv. Mater., 2010, 22(6):734-738. doi: 10.1002/adma.v22:6
    [60]
    KIM S, HWANG S W, KIM M K, et al.. Anomalous behaviors of visible luminescence from graphene quantum dots:interplay between size and shape[J]. ACS Nano., 2012, 6(9):8203-8208. doi: 10.1021/nn302878r
    [61]
    SUN H J, WU L, GAO N, et al.. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application[J]. ACS Appl. Mater Inter., 2013, 5(3):1174-1179. doi: 10.1021/am3030849
    [62]
    TETSUKA H, ASAHI R, NAGOYA A, et al.. Optically tunable amino-functionalized graphene quantum dots[J]. Adv. Mater., 2012, 24(39):5333-5338. doi: 10.1002/adma.201201930
    [63]
    JIN S H, KIM D H, JUN G H, et al.. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano., 2013, 7(2):1239-1245. doi: 10.1021/nn304675g
    [64]
    LINGAM K, PODILA R, QIAN H J, et al.. Evidence for edge-state photoluminescence in graphene quantum dots[J]. Adv. Funct. Mater., 2013, 23(40):5062-5065. doi: 10.1002/adfm.v23.40
    [65]
    ZHOU X J, ZHANG Y, WANG C, et al.. Photo-fenton reaction of graphene oxide:a new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano., 2012, 6(8):6592-6599. doi: 10.1021/nn301629v
    [66]
    PENG J, GAO W, GUPTA B K, et al.. Graphene quantum dots derived from carbon fibers[J]. Nano Lett., 2012, 12(2):844-849. doi: 10.1021/nl2038979
    [67]
    YE R Q, XIANG C S, LIN J, PENG Z W, et al.. Coal as an abundant source of graphene quantum dots[J]. Nat. Commun., 2013, 4. http://cn.bing.com/academic/profile?id=0dc967d711ad69a64d268f96b2ee742a&encoded=0&v=paper_preview&mkt=zh-cn
    [68]
    YE R Q, PENG Z W, METZGER A, et al.. Bandgap engineering of coal-derived graphene quantum dots[J]. ACS Appl. Mater. Inter., 2015, 7(12):7041-7048. doi: 10.1021/acsami.5b01419
    [69]
    LI Y, HU Y, ZHAO Y, et al.. An Electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011, 23(6):776-780. doi: 10.1002/adma.201003819
    [70]
    LIU F, JANG M H, HA H D, et al.. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots:origin of blue and green luminescence[J]. Adv. Mater., 2013, 25(27):3657-3662. doi: 10.1002/adma.v25.27
    [71]
    YOON H, CHANG Y H, SONG S H, et al.. Intrinsic photoluminescence emission from subdomained graphene quantum dots[J]. Adv. Mater., 2016, 28(26):5255-5261. doi: 10.1002/adma.201600616
    [72]
    SHEN J H, ZHU Y H, CHEN C, et al.. Facile preparation and upconversion luminescence of graphene quantum dots[J]. Chem. Commun., 2011, 47(9):2580-2582. doi: 10.1039/C0CC04812G
    [73]
    ZHU S J, ZHANG J H, TANG S J, et al.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:from fluorescence mechanism to up-conversion bioimaging applications[J]. Adv. Funct. Mater., 2012, 22(22):4732-4740. doi: 10.1002/adfm.v22.22
    [74]
    TAN D Z, ZHOU S F, QIU J R. Comment on "upconversion and downconversion fluorescent graphene quantum dots:ultrasonic preparation and photocatalysis"[J]. ACS Nano, 2012, 6(8):6530-6531. doi: 10.1021/nn3016822
    [75]
    GAN Z X, WU X L, ZHOU G X, et al.. Is there real upconversion photoluminescence from graphene quantum dots[J]. Adv. Opt. Mater, 2013, 1(8):554-558. doi: 10.1002/adom.v1.8
    [76]
    LI J L, BAO H C, HOU X L, et al.. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angew Chem. Int. Edit., 2012, 51(8):1830-1834. doi: 10.1002/anie.v51.8
    [77]
    QIAN J, WANG D, CAI F H, et al.. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging[J]. Angew Chem. Int. Edit., 2012, 51(42):10570-10575. doi: 10.1002/anie.201206107
    [78]
    LIU Q, GUO B D, RAO Z Y, et al.. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Lett., 2013, 13(6):2436-2441. doi: 10.1021/nl400368v
    [79]
    NAHAIN A A, LEE E J, JEONG H J. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery[J]. Biomacromolecules, 2013, 14:4082. doi: 10.1021/bm4012166
    [80]
    NAHAIN A A, LEE J E, IN I. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots[J]. Mol. Pharmaceutics, 2013, 10:3736. doi: 10.1021/mp400219u
    [81]
    GE J, LAN M, ZHOU B. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nat. Commun., 2014, 5:4596. doi: 10.1038/ncomms5596
    [82]
    ZHENG T X, THAN A, ANANTHANARAYA A. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes[J]. ACS Nano, 2013, 7:6278. doi: 10.1021/nn4023137
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(4571) PDF downloads(264) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return