Citation: | YU Shu-juan, CHEN Kuan, WANG Feng, ZHU Yong-fei. Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading[J]. Chinese Optics, 2018, 11(3): 420-430. doi: 10.3788/CO.20181103.0420 |
[1] |
SUN Y P, ZHOU B, LIN Y, et al.. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7762. doi: 10.1021/ja062677d
|
[2] |
BAKER S N, BAKER G A. Luminescent carbon nanodots:emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49:6726-6744. doi: 10.1002/anie.200906623
|
[3] |
NⅡNO S, TAKESHITA S, ISO Y, et al.. Influence of chemical states of doped nitrogen on photoluminescence intensity of hydrothermally synthesized carbon dots[J]. Journal of Luminescence, 2016, 180:123-131. doi: 10.1016/j.jlumin.2016.08.021
|
[4] |
娄庆, 曲松楠.基于超级碳点的水致荧光"纳米炸弹"[J].中国光学, 2015, 8(1):91-98. http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml
LOU Q, QU S N. Water triggered luminescent'nano-bombs'based on supra-carbon-nanodots[J]. Chinese Optics, 2015, 8(1):91-98.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9260.shtml
|
[5] |
HAN S, ZHANG H, XIE Y J, et al.. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agentn[J]. Applied Surface Science, 2015, 328:368-373. doi: 10.1016/j.apsusc.2014.12.074
|
[6] |
WANG C X, XU Z Z, CHENG H, et al.. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 2015, 82:87-95. doi: 10.1016/j.carbon.2014.10.035
|
[7] |
BARUAH U, GOGOI N, MAJUMDAR G, et al.. β-Cyclodextrin and calix[4] arene-25, 26, 27, 28-tetrol capped carbon dots for selective and sensitive detection of fluoride[J]. Carbohydrate Polymers, 2015, 117:377-383. doi: 10.1016/j.carbpol.2014.09.083
|
[8] |
WANG W, CHENG L, LIU W. Biological applications of carbon dots[J]. Science China Chemistry, 2014, 57:522-539. doi: 10.1007/s11426-014-5064-4
|
[9] |
YAO J, YANG M, DUAN Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems:new insights into biosensing, bioimaging, genomics, diagnostics, and therapy[J]. Chemical Reviews, 2014, 114:6130-6148. doi: 10.1021/cr200359p
|
[10] |
XU X W, ZHANG K, ZHAO L, et al.. Aspirin-based Carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation[J]. ACS Appl. Mater. Interfaces, 2016, 8:32706-32716. doi: 10.1021/acsami.6b12252
|
[11] |
TAO S Y, SONG Y B, ZHU S J, et al.. A new type of polymer carbon dots with high quantum yield:from synthesis to investigation on fluorescence mechanism[J]. Polymer, 2017, 116:472-478. doi: 10.1016/j.polymer.2017.02.039
|
[12] |
SONG G, LIN Y N, WANG H L. Strong fluorescence of poly(N-vinylpyrrolidone) and its oxidized hydrolysate[J]. Macromolecular Rapid Communications, 2015, 36:278-285. doi: 10.1002/marc.201400516
|
[13] |
ZHU S J, SONG Y B, SHAO J R, et al.. Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units[J]. Angewandte Chemie International Edition, 2015, 47:14626-14637. http://cn.bing.com/academic/profile?id=8e6e271cc5fb19bc846db8dc139ff7c9&encoded=0&v=paper_preview&mkt=zh-cn
|
[14] |
YANG Y H, CUI J H, ZHENG M T, et al.. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan[J]. Chemical Communications, 2012, 48:380-382. doi: 10.1039/C1CC15678K
|
[15] |
XIAO D L, YUAN D H, HE H, et al.. Microwave-assisted one-step green synthesis of amino-functionalized fluorescent carbon nitride dots from chitosan[J]. Luminescence, 2013, 28:612-615. doi: 10.1002/bio.v28.4
|
[16] |
WANG, Y F, WANG X, GENG Z H, et al.. Electrodeposition of a carbon dots/chitosan composite produced by a simple in situ method and electrically controlled release of carbon dots[J]. Journal of Materials Chemistry B, 2015, 3:7511-7517. doi: 10.1039/C5TB01051A
|
[17] |
ZU Y X, BI J R, YAN H P, et al.. Nanostructures derived from starch and chitosan for fluorescence bio-imaging[J]. Nanomaterials, 2016, 6:130-143. doi: 10.3390/nano6070130
|
[18] |
TANG Z J, LI G K, HU Y L. Advances in preparation and applications in quantitative analysis of nitrogen-doped carbon dots[J]. Progress in Chemistry, 2016, 28:1455-1461. http://cn.bing.com/academic/profile?id=e9000fef9c5aefc6345ee55badfaca52&encoded=0&v=paper_preview&mkt=zh-cn
|
[19] |
LIN Y, ZHANG L Z, YAO W, et al.. Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and biolabeling[J]. ACS Applied Materials & Interfaces, 2011, 3:995-1002. http://cn.bing.com/academic/profile?id=693f8e0a4ecc3998f81c21e481a6590d&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
WADAJKAR A S, KADAPURE T, ZHANG Y, et al.. Dual-imaging enabled cancer-targeting nanoparticles[J]. Advanced Healthcare Materials, 2012, 1:450-456. doi: 10.1002/adhm.201100055
|
[21] |
CHEN G, WANG L W, CORDIE T, et al.. Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging[J]. Biomaterials, 2015, 47:41-50. doi: 10.1016/j.biomaterials.2015.01.006
|
[22] |
WU D Q, LU B, CHANG C, et al.. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier[J]. Biomaterials, 2009, 30:1363-1371. doi: 10.1016/j.biomaterials.2008.11.027
|
[23] |
LEE Y K, HONG S M, KIM J S, et al.. Encapsulation of CdSe/ZnS quantum dots in poly(ethylene glycol)-Poly(D, L-lactide) micelle for biomedical imaging and detection[J]. Macromolecular Research, 2007, 15:330-336. doi: 10.1007/BF03218795
|
[24] |
SILL K, EMRICK T. Nitroxide-mediated radical polymerization from CdSe nanoparticles micelles[J]. Chemistry of Materials, 2004, 16:1240-1243. doi: 10.1021/cm035077b
|
[25] |
CHOWDHURI A R, TRIPATHY S, HALDAR C, et al.. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery[J]. Journal of Materials Chemistry B, 2015, 3:9122-9131. doi: 10.1039/C5TB01831E
|
[26] |
RADHAKUMARY C, NAIR P D, NAIR C P R, et al.. Chitosan-comb-graft-polyethylene glycol monomethacrylate-synthesis, characterization, and evaluation as a biomaterial for hemodialysis applications[J]. Journal of Applied Polymer Science, 2009, 114:2873-2886. doi: 10.1002/app.v114:5
|
[27] |
KONO H, TESHIROGI T. Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery[J]. International Journal of Biological Macromolecules, 2015, 72:299-308. doi: 10.1016/j.ijbiomac.2014.08.030
|
[28] |
GEDDA G, LEE C Y, LIN Y C, et al.. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions[J]. Sensors and Actuators B:Chemical, 2016, 224:396-403. doi: 10.1016/j.snb.2015.09.065
|
[29] |
FU D J, JIN Y, XIE M Q, et al.. Preparation and characterization of mPEG grafted chitosan micelles as 5-fluorouracil carriers for effective anti-tumor activity[J]. Chinese Chemical Letters, 2014, 25:1435-1440. doi: 10.1016/j.cclet.2014.06.027
|
[30] |
PAPADIMITRIOU S A, ACHILIAS D S, BIKIARIS D N. Chitosan-g-PEG nanoparticles ionically crosslinked with poly(glutamic acid) and tripolyphosphate as protein delivery systems[J]. International Journal of Pharmaceutics, 2012, 430:318-327. doi: 10.1016/j.ijpharm.2012.04.004
|
[31] |
LI X Y, KONG X Y, SHI S, et al.. Biodegradable MPEG-g-chitosan and methoxy poly(ethylene glycol)-b-poly(e-caprolactone) composite films:Part 1.preparation and characterization[J]. Carbohydrate Polymers, 2010, 79:429-436. doi: 10.1016/j.carbpol.2009.08.032
|
[32] |
ZHANG Y, WANG Y L, FENG X T, et al.. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots[J]. Applied Surface Science, 2016, 387:1236-1246. doi: 10.1016/j.apsusc.2016.07.048
|
[33] |
YANG S W, SUN, J, LI X B, et al.. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. Journal of Materials Chemistry A, 2014, 2:8660-8667. doi: 10.1039/c4ta00860j
|
[34] |
ARDEKANI S M, DEHGHANI A, HASSAN M, et al.. Two-photon excitation triggers combined chemo-photothermal therapy via doped carbon nanohybrid dots for effective breast cancer treatment[J]. Chemical Engineering Journal, 2017, 330:651-662. doi: 10.1016/j.cej.2017.07.165
|
[35] |
FAN R J, SUN Q, ZHANG L, et al.. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging[J]. Carbon, 2014, 71:87-93. doi: 10.1016/j.carbon.2014.01.016
|
[36] |
REMANT K B C, THAPA B, XU P S. pH and redox dual responsive nanoparticle for nuclear targeted drug delivery[J]. Molecular Pharmaceutics, 2012, 9:2719-2729. doi: 10.1021/mp300274g
|